Empirical likelihood estimation
of interest rate diffusion model

MASTER THESIS

Lukas Lafférs

COMENIUS UNIVERSITY, BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS
DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS

9.1.9 Economic and Financial Mathematics

doc. Mgr. Marian Grendar PhD.

BRATISLAVA 2009



Odhad parametrov
diftizneho modelu trokovej miery
metodou empirickej vierhodnosti

DIPLOMOVA PRACA

Lukas Lafférs

UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
KATEDRA APLIKOVANEJ MATEMATIKY A STATISTIKY

9.1.9 Ekonomicka a Financénd Matematika

doc. Mgr. Marian Grendar PhD.

BRATISLAVA 2009






COMENIUS UNIVERSITY BRATISLAVA
FacuLTty OF MATHEMATICS, PHYSICS AND INFORMATICS
DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS
EcoNnoMIC AND FINANCIAL MATHEMATICS

EMPIRICAL LIKELIHOOD ESTIMATION
OF INTEREST RATE DIFFUSION MODEL
(Master Thesis)

LUKAS LAFFERS

Supervisor: Marian Grendar Bratislava, 2009



I declare this thesis was written on my own, with the
only help provided by my supervisor and the referred-to

literature and sources.



Acknowledgement

[ am grateful to Marian for his excellent leading and insightful comments.

I hereby thank and acknowledge Qingfeng Liu for the source code and discus-
sions, this was a great help for me.

My thanks and appreciation also goes to Zuzka, my family and friends for love

and support.



Abstract

Empirical Likelihood (EL) combined with Estimating Equations (EE) provides
a modern semi-parametric alternative to classical estimation techniques like Max-
imum Likelihood Estimation (ML).

In the diploma work we use closed form of conditional expectation and condi-
tional variance of Interest Rate Diffusion model (Vasicek model and Cox-Ingersoll-
Ross model) to perform Maximum Empirical Likelihood (MEL) estimation and
Maximum Euclidean Empirical Likelihood (EEL) estimation of parameters of the
models. Problem of singularity in EEL is resolved my means of Moore-Penrose
pseudoinverse. Monte Carlo simulations show that MEL and EEL provide com-
petitive performance to parametric alternatives. Moreover, it turns out that a set
of estimating equations employed here provides increased stability compared to
recent approach, which utilizes closed form of conditional characteristic function.
Calibration of CIR model on European Over-Night Interest Rate Average data by
means of MEL and EEL appears to be sufficiently plausible. Steady state mean
and standard deviation implied by obtained estimates are consistent with sample

mean and standard deviation from the data.

Keywords: Empirical likelihood, Euclidean empirical likelihood, Estimating

equations, Vasicek model, CIR model



Abstrakt

Metoda empirickej vierhodnosti spolu s odhadovymi rovnicami je modernou al-
ternativou ku klasickym odhadovacim pristupom ako napriklad metoda maximalne;j

vierhodnosti.

V tejto diplomovej praci pouzivame explicitné vyjadrenie podmienenej stred-
nej hodnoty a podmienenej disperzie difizneho modelu trokovych mier (Vasickov
model a Cox-Ingersoll-Ross model) na odhad parametrov modelov metédou ma-
ximalnej empirickej vierodnosti (MEL) a maximalnej euklidovskej empirickej vie-
rohodnosti (EEL). Pouzitie Moore-Penrose-ovej pseudoinverznej matice vyriesilo
problémy so singularitou v EEL. Monte Carlo simulacie ukazuju, ze MEL a EEL
st porovnatelné s parametrickymi alternativami. Naviac, ukazuje sa, Ze pouZitie
danych odhadovacich rovnic zvysilo stabilitu v porovnani s modernym pristupom,
ktory vyuziva explicitné vyjadrenie podmienenej charakteristickej funkcie. Kalib-
racia CIR modelu na datach eurépskeho priemeru jednodnovych trokovych mier
pouzitim MEL a EEL sa javi ako dostato¢ne hodnoverna. Stredna hodnota a Stan-
dardnéa odchylka stacionarneho stavu vypocitana na zaklade odhadnutych paramet-

rov je konzistentna s vyberovou strednou hodnotou a standardnou odchylkou z dat.

Klacové slova: Empirickd vierohodnost, Euklidovsk4 empirickd vierohodnost,

Odhadovacie rovnice, Vasicek model, CIR model
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Chapter 1
Introduction

Estimation of a parameter of interest which affects distribution of measured data
usually begins with a specification of a model, i.e., a family of probability distri-
butions parametrized by the parameter. In this setting, the estimation is most
commonly performed by the Method of Maximum Likelihood (ML). Resulting ML
estimators enjoy excellent asymptotic properties: they are asymptotically unbi-
ased, asymptotically normally distributed and asymptotically efficient, so that the
given information is fully exploited. Unfortunately, in many cases the family of
distributions that generates data is unknown. In this respect it should be noted
that the theory of Quasi Maximum Likelihood studies conditions under which ML
estimators retain at least consistency property, when they are erroneously based
on gaussian model.

If a researcher refuses to make distributional assumptions then semi-parametric
methods can be used. Suppose that the information about the parameters of in-
terest is in form of unbiased moment functions. All what is known is that the
expectation of the moment functions, which are functions of data and vector of pa-
rameters, is zero. Resulting equations are called (Unbiased) Estimating Equations
(EE). EE define a set of probability distributions which form the model. In order
to relate the model and data, an empirical analogue of EE is formed by replacing
the expectations by the average. If the number of equations is equal to dimension
of vector of parameters, which is known as the exactly identified case, then the set
of equations can be solved. An estimator which is obtained this way is known as

the Method of Moments estimator.
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Hansen (1982) extended MM estimation and inference to the over-identified
case, where the number of the moment conditions (encoding the information we
have in our disposal) is greater than number of parameters. In this case it is not
possible to satisfy all the EE at once, but it is meaningful to find a pseudo-solution
which is as close to zero in all the EE, as possible. The closeness is measured by a
weighted Euclidean distance. The resulting estimator is known as the Generalised
Method of Moments (GMM) estimator. If the statistical model is not misspecified
(i.e., it contains the true data-generating distribution), then GMM estimator is
asymptotically normally distributed, with a known covariance matrix.

In GMM framework every observation is given the equal weight 1/n, where
n is the number of observations. However, it is meaningful to assign unequal
weights to the data. If the drawn data are IID, then the likelihood of a random
sample is simply the product of all the assigned weights (probabilities). Then, an
objective may be to jointly set these probabilistic weights and vector of parameters
to maximize the likelihood of the sample subject to empirical Estimating Equations.
This way a parametrized probability mass function (pmf) from the model (i.e., the
set of parametrized pmf’s which are supported by the sample and satisfy empirical
EE) with highest value of likelihood is selected. The parametric component of
the pmf serves as an estimator of the parameter of interest. The estimator is
known as the Maximum Empirical Likelihood estimator. Note that the data itself
chooses which observation should be given a higher or lower probability (weight).
The Empirical Likelihood approach combines reliability of semi-parametric models
with efficiency of likelihood based methods.



Chapter 2

Empirical Likelihood

2.1 Empirical Likelihood for the mean

In this section we will explain empirical likelihood approach to estimation and
inference in more technical terms. Presentation is based on Owens’ book [Owe01]
and an article [QL94] by Qin and Lawless. In his first explanation of EL. Owen
([Owe01], Chapter 2) focuses on confidence intervals for mean of a random variable,
which is sufficient also for our purposes here. The presentation will be restricted
to the discrete case, because the idea of empirical likelihood is there very clear and
easily understandable.

First of all, we will show, that given no information, Empirical cumulative distri-
bution function (ECDF) is the most likely distribution or nonparametric maximum
likelihood estimate (NPMLE).

Let X be random variable, the cumulative distribution function is F(z) =
P(X < z) for —oo < < oco. We also denote F(z—) = P(X < z) and P(X =
r) = F(x) — F(z—). Let 140 stands for the function which is equal to 1 if
proposition A(z) holds, otherwise it is 0.

Definition 1. Let X, X5, ..., X,, € R are random variables. Then the empirical

cumulative distribution function of X is

1 n
Fo(x) = - Z Lx, <z,
=1

for —oo < x < 0.
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Definition 2. Given X1, X, ..., X,, € R, which are assumed independent with com-
mon CDF Fy, the nonparametric likelithood of the CDF F is

Next theorem shows that nonparametric likelihood is maximized by the ECDF.

Theroem 3. Let X, Xs, ..., X,, € R be independent random variables with common
CDF Fy. Let F, be their ECDF and F be any CDF. If F # F,, then L(F) <
L(F,).

Proof. Let 21,2, ..., zm be distinct values in {X7, Xo, ..., X,,}. Let n; be the
number of X; that are equal to z;. Denote p; = F(z;) — F(z;—) and p; = n;/n. If
p; = 0 for any j = 1,...,m then L(F) = 0 and inequality holds. We also use that
log(x) < x — 1. Suppose that p; > 0 for all j =1,...,m. So

log(L(F)) = log M
L(Fy) [T, )
= anlog (&)
j=1 Pj
= n>opton (%)
j=1 Pj
m X pj
< n Pil — — :0,
2. (pj )

J=1

therefore L(F) < L(F,).

There is a strong intuition behind this result. If there is no information about
the underlying distribution, other than the observed random sample, then ECDF
is the most likely distribution generating the data.

Now we define the empirical likelihood ratio (ELR), which is a basis for param-

eter estimates, tests and confidence intervals in EL framework.

Definition 4. For distribution F', we define empirical likelihood ratio R(F) as
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Let there be a random sample x4, xs, ..., z,, of size n from distribution F. Let
w; denote weight that is assigned to i-th observation; LE., w;, = F(z;) — F(x;—).

It can be easily shown, that
R(F) = H nw,
i=1

even if z-s are not distinct.
Assume that there is an interest in a parameter § = T'(F'), where T is some

function of distributions F'.

Definition 5. For distribution F' € F, we define profile empirical likelihood ratio
R(F) as
R(0) = sup{R(F)|T(F) =0, F € F}.

Once we know the distribution of ELR, we are ready to make statistical infer-
ence. Therefore, we proceed with Empiricial likelihood theorem (ELT), proof can
be found in [Owe01]. It is a non-parametric analogue of Wilks’s theorem. ELT
concerns the population mean of some distribution. We will extend this to more

general cases using estimating functions later on.

Theroem 6. Let X, Xs,..., X, be independent random wvariables with common
distribution Fy. Let py = E(X;), and suppose that 0 < Var(X;) < oo. Then

—2log(R (o)) converges in distribution to X?l) asmn — oo.

Based on this information we can construct confidence intervals for mean.

R(p) = max {inuﬂ zn:wiXi = [, w; > O,zn:wi = 1}
§ i=1 i=1

=1
n n n
(3 ) = {323 2 0.3 =1}
=1 =1 =1

Therefore confidence interval is the set of all u that are plausible enough, more

than the threshold 7y, which depends on our significance level.

2.2 Estimating equations and EL

This part presents estimating equations (EE) linked with empirical likelihood as
extremely flexible tool for parameters estimation; cf. [QL94], [Owe01], [MJMOOQ].

7
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Note that with this framework we are also able to incorporate the prior information
about the underlying distribution.

Suppose that information about distribution F'is in form of unbiased estimating
functions m (X, 0). Let X € R? be a random variable, § € R vector of parameters

of interest and vector-valued function m(X,#) € R* such that
E(m(X,60)) =0.
There are three different cases that can occur, we will focus on the last one.

e Under-identified case p > s - in this case do not sufficient information to

identify 6, but we can reduce the size of the space of parameters.

e Just-identified case p = s - Method of Moments can be used since the number

of the restrictions is the same as the number of parameters of interest

e Over-identified case p < s - this is of crucial importance in Econometrics,
where several methods have been developed to deal with this case; e.g. Gen-

eralized Method of Moments or Empirical Likelihood.
Few examples of estimating equations

e m(X,0) =X — 0 for estimation of the mean

e for estimation of the variance 0 = (u,0), mi1(X,0) = X — p, mao(X,0) =
(X —p)?—o?

e we require that a-quantile is 4:
m(X, 9) = ]-X§4 —

for estimation of the mean of a symmetric distribution 0 = u, my(X,0) =
X — W, TTLQ(X, 9) = 1X§N —0.5

EE can cover broad type of information. Note that by selecting m(X,0) =
% log f(x,#), maximum likelihood estimator can be obtained, whenever it is defined
by the score equations.

In this case profile empirical likelihood is in form

n

R(0) = max {Hnwl| Zn:wim(Xi,G) =0,w; > O,Zn:wi = 1} :
' i=1

i=1 =1

Following theorem is natural extension of [0

8
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Theroem 7. Let X, Xs,..., X, be independent random wvariables with common
distribution Fy. Forf € © CRP, and X € R?, letm(X,0) € R®. Letfy € © be such
that Var(m(X;,0)) is finite and has rank ¢ > 0. If 0y satisfies E(m(X;,0)) = 0,

then —2log(R(ug)) converges in distribution to X%l) as n — oo.

Proof is straightforward from [6]

2.3 Maximum Empirical Likelihood Estimator

Empirical likelihood is method of statistical inference, however in this work we are
interested more in estimation than in tests and confidence regions by EL. This
section draws on [Owe(1] and [QL94].

Maximum Empirical Likelihood Estimator (MEL) is defined as the value of 6
that maximizes the profile empirical likelihood

0, = argmax R(6).
0o

We can see that MEL is result of two interdependent optimization problems.

For the inner loop, which is maximization over weights (probabilities) w; that
we assign to particular observations, we can solve dual problem.

Since log-transformation is monotonous, let us rewrite the inner loop using

Lagrangian in the following form

G= Zlog(nwi) —n\ (Z w;m(X;, 6)) — (Z w; — 1) .

Note that space of vectors of weights is convex set S,,_1 = {(w1, ..., w,)| Yoy w; =
1,w; > 0} and log-transformed objective function is strictly concave. We solve FOC

for this optimization problem

oG 1
= _— / X — =
e " nAm(X;,0) —~v=0
" 0G
Zwi— = n—y7=0=7=mn,
= ow

SO

Y \n) 14+ MYm(X,,0)

9
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with restriction

- 1 « 1
= E m(X;,0) = | — E X;,0),
0 — wim ) (n) 1+)\’m(Xi,9)m( )

=1

therefore we can think about the lagrange multipliers A as a function of §, A = \(0).

In order to ensure that 0 < w;, for fixed 6, vector A\ has to satisfy
Vi: 14 XNm(X;,60)>0. (2.1)

We omitted case in which w; = 0, because this cannot be result of our mini-
mization, since the objective function approaches —oo, so Vi : w; # 1 and we can

use strict inequality sign in ([2.1)).
If we substitute this w; into log R(F') we get

log R(F) = — Z log(1 4+ X'm(X;,0)) = L(N).
i=1
In this dual problem we seek minimum of L(\) over A\. So we have changed maxi-
mization over n-weights subject to d41 constraints to minimization over d variables
A subject to n constraints ([2.1]), note that we eliminated v = n.
Now we face the following constrained optimization problem

min L(A\) s.t. Vi: 1+ XNm(X;,60) > 1/n.
AeRd

Owen in his book [Owe(01] provides a trick which change this problem into the

unconstrained optimization. Let us define a pseudo-logarithm function

log. (2 log(2), if z > 1/n,
T log(1/n) — 1.5+ 2nz — (n2)?/2, if z < 1/n,
L.\ = — i log, (1 4+ X'm(X;,0)). (2.2)

The function is unchanged for arguments greater than 1/n and it is quadratic if
argument is less than 1/n, which corresponds to w; > 1 and therefore will not affect
optimiziation. This transformation may significantly reduce the computational

burden.

10
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Using convex duality theorem, we have thus obtained another optimization
problem that leads to MEL

0p, = argmax max {Zlog(nwi)\Zwim(Xi,G) = O}, (2.3)
i=1 i=1

9ce  Wi€Sn—1

=
Op, = arg max min L.(\),
6c®  AeR?—
=
Op, = argminmaleog*(l—i—/\’m(XZ-,@)). (2.4)

d
#c® AeR i1

Equation (2.4) will be the basis for computational part of this thesis.

2.4 Empirical Likelihood as GMC

Previous sections describe Empirical Likelihood in discrete case, where it is a very
intuitive concept. To extend EL into continuous case, we have to use a more
theoretical framework. This seems to be necessary to avoid a discrete-continuous
conflict, which results from the fact that we are optimizing over discrete distri-
butions subject to constraints involving continuous pdf’s. This section provides
a justification for use of EL also in the continuous case. It is based on convex
duality and subsequent replacement of the original measure p by its sample coun-
terpart u, (ECDF). Bickel, Klassen, Ritov and Wellner [BKRW93] pointed out,
that Maximum Likelihood estimate may be subsummed under Generalized Mini-
mum Contrast (GMC) estimation procedure. Kitamura in his comprehensive study
[Kit06] showed how EL can be included into GMC scheme. We will follow his ar-
gument and notation. Suppose we have a convex function ¢ which measures a

divergence between two probability measures P and @)

prQ) = [o (j—g) 1. (25)

We denote x as IID p-observations from the true probability measure pu, M is the

set of all possible probability measures on R? and

P(O) = {P e M : /m(m,@)dP: o}.

11
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Let P = UpecoP(0) is the set of all measures that are consistent with the moment
restriction. Statistical model P is correctly specified if € P.

Our goal is to find the value of parameter 6 which solves the GMC optimization

inf p(6, 1), p(6, 1) = oty D(P, ).

Note that inner loop of this optimization problem contains a variational problem
and therefore it is difficult to compute. We will show in detail how Lagrange duality

can be used to transform this problem to finite dimensional unconstrained convex

optimization problem. If we set p = %, so D(P,u) = [ ¢(p)dp, then the primal

problem is infinite dimensional optimization. Note that since we are in the inner

loop, parameter # remains fixed

v(0) :;relg)/c;ﬁ(p)d,u s.t. /m(z,@)pdu:(),/pdu: 1. (2.6)

We write down Lagrangian

L(p,A,v) = /¢(p)du - X/m<x,9)pdu - (/pdu - 1) :
L(p,\y) = v+ /(cb(p) — A'm(z,0)p — yp)du,
inf L(p, A ) = v+ / inflé(p) — (A'm(z, 0) +~)pldp

and since [

fy) = Sgp[wy—f(x)h
—f*y) = wflf(z) -y,

the objective function in dual problem may be rewritten as
inf L(p, A7) = 7 - /d)*(’y + N'm(z, 0))du,
p

so we obtained computationally more convenient dual problem

v*(f) = max {’y — /¢*(7+Xm(:v,9)du} . (2.7)

yER, ERY

Function f*(y) is convex conjugate of f

12
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Note that by the Fenchel duality theorem (Borwein and Lewis (1991), [BL91])
v(0) = v*(f). The probability measure that solve the optimization problem ({2.6)

is in form
p= ()3 + Nm(z,0)), (2.8)

where 7, ) is the solution of dual problem 1)

Therefore we face the following problem

inf v*(f#) = inf max {7 - /¢*(7 + Xm(x,@)d,u} :

0cO €O yER,\ERY

Here we take empirical measure p, as valid approximation of true measure y. This

will lead to sample version of GMC problem
1 n n n
in — i) .z. i ,9 :O, 121,9 @
mmn;(b(np) s ;pm(:ﬁ ) ;p €
So the GMC estimator for 6 is defined as

R 1 <
0 p— 1 1 f - ,L .
arg min in i ;1 o(np;)

0cO®  Pi,PESn_1,y 1 pim(x,0)=

We can use Lagrange duality to form computationally convenient but equivalent

dual representation of GMC estimator

0= i = 6 (v + Nm(z,0) | .
ar%;gmye%,%{m y izlqzﬁ (v + N'm(z,0)

Now different choices of function ¢(x) yield different estimators. If we set ¢(x) =

—log(z) the GMC estimator is empirical likelihood estimator

n

) 1
0 = arg min inf — — log(np;
§€@ PiPESn—1,2 51 pim(zi,0)=0 T i=1 g< pl)
or
0 = argmin max |y+ 1+ lilog(_V — Nm(z,0))
9co YERAERY n i
1 n

B ! o 2 los(1+ Xm(w;, 0 2.9
R [Z e ”] 29)

in convenient dual representation.

13
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2.5 Euclidean Empirical Likelihood

Quadratic choice of ¢(z) = 1(z*—1) in implies so called Euclidean Likelihood
[Owe01], where the nonparametric likelihood function is in its position of objective
function replaced by the euclidean distance - " | (np; — 1)% cf. [BC98]. For
euclidean distance an explicit solution of the inner loop exists that significantly
reduces the computational burden. Euclidean likelihood is in fact quadratic ap-
proximation of empirical likelihood, as is shown below.

The EL problem is to maximize

1(0) = min [— Z % log(npi)] = [% Z log(1 4+ N'm(z;, 6’))]

meGSn—le?:l pim(xive):() . .
=1 1=1
(2.10)

over 6, where A = argmax,.p > ., log(14+XNm(z;,0)) and D = {1+ Nm(z;,0) >
0}. For short m(z;, 0) the first argument of m is ommited.

Expand [(0) using Taylor series near p; = %

l(@):i(p,;—%)—i—%inz (pi—%)Q—l—... (2.11)

i=1 i=1

The dominant term of I(6) is 3 >0, (np; — 1)*.
Euclidean Empirical Likelihood is defined as

66[(0) = minpiypesnfhzzl:l sz(mzﬂ)zo Z’?:l(npl - 1)2
Thanks to its quadratic form an explicit solution for the the inner loop exists.

Indeed, since Y »  (np; — 1)> =n?>_7" | p? — n, our optimization problem is

rr;axipf, s.t. ipi = 1,ipimi(6) =0 Vi:p;>0.
E—T i=1 i=1

Writing down Lagrangian, where «; are Lagrange multipliers yields

L(p,a) = ZP? + Qo (sz - 1) + O/szmi(e).
i=1 i=1 i=1

From the first order conditions it can be seen that
q
Di=— <a0 +) ajmij(e)) . (2.12)
j=1

14
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Denote @ = (o, @1, ...y ),V = >0 mi(0), V' = (V1,...,V,),R = (Rjjr)gxq and
Rjj = > imy mij(0)mg (6).

Conditions . .
Zpizl Zpimi(e)zo
i=1 i=1

can be rewritten in matrix form as (there we introduce e; and B)

1{n V 1
— r_ _ = = ——
ep=(10...0)= 2<V R)a 2Boz.

Rewriting ([2.12)) yields

pi = (1,m}(0))B e,

I
+
S|+

where H = R —n~'VVT,
Using simple algebra it can be shown [BC9§|, that

eel(9) = V'H'V,
so Maximum Euclidean Empirical Likelihood estimator is

Oppr, = arg min eel() = argmin V' H'V.
9co 9cO

2.6 Asymptotic properties of EL with estimating

equations

Qin and Lawless [QL94] obtained the main asymptotic results for EL with EE.
We state Theorem 1 and result of Theorem 3 from [QL94] (two main asymptotic
results), saying about asymptotic normality and efficiency in the sense of Bickel,
Klaassen, Ritov and Wellner [BKRW93].

Let us denote éEL

6, = arg minma log, (1 + XN'm(X;,0
EL %e@ AGR}d(; g.( ( )

and \ as the value of A € R that optimizes the inner loop.
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Theroem 8. Assume that Elm(x,00)m’(x,0y)] is positive definite, Om(z,8)/00
and 9*m(x,0)/0000' are continuous in 6 in a neighborhood of the true value 6y,
| 8m(m,0)/86’|| | 8>m(z,0)/000¢'| and ||m(z,0)|> are bounded by some inte-

grable function G(x) in this neighborhood, and the rank of || Om(x,0)/00|| is p.
Then

Vi(0g, —0) — N(0,V), vn(A—0) — N(0,U),

Vi(E, = F(z)) — N(0,W(x)),

where

Fn = Zﬁzl(rz<w)7
=1

pi= (%) 1+X'm1(x,~,éEL)’
o)
W(z) = F(z)(1 - F(x)) — B(x)UB'(z),

B(ZL‘) =F [m(xiaeol(xi<x))] )

Ule) = [B(mm')] ™ {1 B (@a_@ vE (%_75) {E(mm,ﬂ-l}

and Og and X are asymptotically uncorelated.

Another asymptotic result from [QL94] is the fact that under conditions of The-
orem [§] and some other mild regularity conditions MEL’s for both the parameters

and the distribution function are asymptotically efficient in the sense of Bickel,
Klaassen, Ritov and Wellner [BKRW93].

2|| A|| denotes the euclidean norm of A.

16



Chapter 3

Interest Rate Models

This chapter introduces three interest rate models, for which we are interested
in parameters estimation. Evolution of interest rates is driven by the time and

random components.

3.1 Short term interest rate

Riskless bond is the base of the pricing of all financial derivatives. The prices of
the riskless bonds on the market determines the term structure of the interest rates
R(t,T) [eSMO9)

P(t,T) = e BEDT=1), (3.1)
where P(t,T) is the price of the bond at time ¢ which pays one unit at the maturity
time 7" and R(t,T) is the corresponding interest rate

log P(1,T)

Rit,T) = -2 2

Then short term interest rate or short rate is defined as the starting point of the

term structure of the interest rate
r; = lim R(t, T).
t—T

Term structure of interest rates is usually named by the capital of the country
e.g. LIBOR (London Interbank Offered Rate), PRIBOR (Praha Interbank Of-
fered Rate) or BRIBOR (Bratislava Interbank Offered Rate). Depending on the

maturity, term structure of interest rates can have different shapes [eSM09].

17
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3.2 Vasicek model

Vasicek model for instantenous interest rates was introduced by Oldrich Vasicek in
1977 [Vas77]. This process has interesting mean reversion property, which causes

that interest rate cannot rise to infinity
dry = (0 — kry)dt + odW;.

Given the information about the interest rate in time ¢-r;, using [t6 lemma one
can derive the conditional density, which is normal with the following mean and

variance (we set time increment 7 = 1):

o(l —e™*
E(ria|re,t>0) = me "+ %, (3.2)
o2(1 — e72%)?2
Vv t>0) = ——2.
ar(re1|re, ) o
0.25 T T T T
0.2 i
0.15f i
0.1} f
M, A
\
0.05r i
0 -
-0.05 i
-0.1 1 1 1 1
0 10 20 30 40 50

Three simulations of Vasicek model § = 0.03, x = 0.5 and o = 0.0367. Vasicek model

allows r; to drop below zero.

18



EMPIRICAL LIKELIHOOD ESTIMATION OF INTEREST RATE DIFFUSION MODEL

3.3 Cox-Ingersol-Ross model

Cox-Ingersol-Ross model (CIR) is short-term interest rate model which was devel-
oped in 1985 [CIR85]. The economic theory behind this model involves anticipa~
tions, risk aversion, investment alternatives and preferences about the timing of
consumption. All these factors determine bond prices [CIRS5].

Random component in CIR is represented by the Wiener process increment
drt = ((5 — /i?“t)dt + U\/?Ttth. (33)

Parameters in this equation are positive, § > 0,x > 0,0 > 0.
CIR captures two important properties of real short-term interest rate dynam-

ics:
e Mean reversion - interest rate tends to fluctuate over long-run trend 46 /x,

e Volatility is not constant, but increases with interest rate r;.

In order to estimate the parameters of this model by maximum likelihood
method, it is necessary to find conditional density function. This was done in
[CIR&5]:

—c(utriyr) Tt4r a/2
f(reer|re, t > 0,7 > 0) = ce T <—> I,(2¢\/uri,), (3.4)
u
2K o 20
—————, U=T€ = —
0_2(1_6_57)7 t y 4 0_2_17

where I,(-) denotes the Bessel function of the first kind of order ¢. If we set 7 =1,

CcC =

then the conditional mean and conditional variance are

0(l—e"
E(T’t+1’7”t,t > 0) = T’tein + %, (35)
2, —K 1—¢ " 25 1—¢ " 2
Var(ri|r,t>0) = rio’e (1 - e™) +2 ( 26 ) .
K 2K

If we want to simulate data that follows CIR dynamics, we use the fact that
2criy1|re ~ x?(2q + 2,2cu). Zhou [ZhoO1] recommends to discard some data from
the beginning so that the interest rate series can ”forget” its initial value ry.

The steady state density of the CIR model is

v

f(ro) = %ré’_l exp(—wry), (3.6)
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where
20 2K
V= — W= —.
o2’ o2

Mean and variance of this marginal density are

Birg) = ¢, (3.7
Var(rg) = (27_/;; (3.8)

0-25 T T T T

0.2

0.15

0.1

I (ALY

0 10 20 30 40 50

V

Three simulations of CIR model § = 0.03, xk = 0.5 and ¢ = 0.15. Decreasing r;

diminishes the volatility.

3.4 Vasicek Exponential Jump model

Vasicek Exponential Jumps model (VEJ) was proposed by Das and Foresi [DF96]
(1996). In the model, size of random jumps is exponentially distributed, distri-

bution of direction of the jumps is binomial and the frequency of these jumps is
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represented by the Poisson increment. These jumps can model higher order mo-
ments of the conditional distribution. Note that for Vasicek model conditional
density is normally distributed, therefore skewness and kurtosis are equal to 0 and
3, respectively. In practice, however, normality of data is usually not the case;
[DF96].

Short term interest rate in VEJ satisfies the following stochastic differential
equation

drt = ((5 — K/Tt)dt ‘I— O'th + Jtht7
|Ji| ~ Exp(a), sign(J;) ~ Bin(3), Ny ~ Poi(\).

Despite the fact that the conditional density cannot be obtained in explicit
form, the Conditional Characteristic Function [DF96] can be obtained explicitly,
and consequently utilized for estimation of the model parameters; cf. [LNO8|. More

details can be found in chapter [6]

4.8

50

Three simulations o VEJ CIR model 6 = 0.02949, x = 0.00283, ¢ = 0.022, oo = 0.1,
B =1and XA = 0.28846. Note that § = 1 causes that there are only upward jumps.
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Chapter 4

Small sample properties of

different estimators of parameters
of Vasicek and CIR models

Small sample properties of possible estimators of of parameters of Vasicek and CIR
models can be obtained by means of a Monte Carlo study. Zhou [ZhoO1] performed
an extensive MC comparison of Efficient Method of Moments (EMM) with other
estimation methods. Zhou has not included into studied semi-parametric methods

the Empirical likelihood method, which we do here.

4.1 Estimators

4.1.1 Maximum Likelihood Estimator

Since the underlying conditional distribution are known, and the informa-
tion can be fully utilized in parameter estimation by ML method, which maximizes
the log-likelihood function.
Suppose we observe zy,...,z, from the distribution with probability density
function f(z|0)
Oriz, = arg maleog f(z40).
[

We will be able to compare our estimators with the asympotical efficient ML,

22
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which will be the base of our comparison.

4.1.2 Quasi-Maximum Likelihood Estimator

QML assumes that the distribution is normal with the conditional mean and con-

ditional variance given at and

éQML = arg maleog f(z:]0), f(zx) = e 22 .

b0 2wo
In the case of Vasicek model, the conditional density is normal, hence QML and
ML coincide.

4.1.3 Maximum Empirical Likelihood Estimator

To form a model, estimating equations from [ZhoO1]:

Tt41 — E(Tt-‘rl‘rt)
e [rep1 — E(rega|re)]
V(realre) = [resr — B(ragalre))?

Ty {V(Tt+1|7”t) — [res1 — E(Tt+1|rt)]2}

my(0) = (4.1)

were used. The estimating equations utilize the explicit form of conditional mean
and conditional variance shown in section 3.3l Unconditional moments are con-

structed from the conditional ones. We know that
E(ripa|r) = 0= E(ri44)g(r)) = 0.

So that choices g(z) = 0 and g(z) = = lead to estimating equations (4.1)).
MEL estimator (2.10) is given as (0 = [J, &, 0])

. 1 —
— arg mi =N log, (14 N,
Opr argergm max | ; og,(1+ A'm;(0))

4.1.4 Maximum Euclidean Empirical Likelihood Estimator

The detailed derivation of EEL is in section

O g, = arg min eel(§) = argmin V' H 'V,
0o 9co

23
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where Vi = 320 mij(0),V" = (Vi, ..., Vo), R = (Rjjr)gxq and Rjjr = 320y mi; (0)mije (6).
We encountered singularity problems. Similar problems were noted in [BC98] where
GMM was used; and it is known that EEL and GMM are closely related meth-
ods. To avoid it, we used the Moore-Penrose pseudoinverse [Pen5j] H The same
moments (the same information) were used as in the MEL case.

A connection between Continuous GMM and EEL is discussed in [Kit01].

4.2 Monte Carlo simulation results

A 2000 samples of interest-rate series of length 1000 were generated by CIR and
Vasicek model, with parameter values 6 = 0.03,x = 0.5,0 = 0.15 for CIR. These
values, according to Ait-Sahalia [AS02], fit in with the US interest rates. For
Vasicek model the same values of § = 0.03,x = 0.5 were used, but the diffusion
parameter was changed into o = 0.15\/§ = (0.0367 so that it takes into account the
long run trend. Then both CIR and Vasicek model yield similar interest rate series.
Simulations were performed in Matlab 7.7.0 on CPU T2130 with 2GB RAM. We
used BFGS method with cubic line search (Matlab built-in function fminunc) in
the inner loop of the optimization, utilizing the gradient information and Nelder-
Mead simplex method (fminsearch) in the outer loop. For all the estimators the
true parameters [0.03 0.5 0.0367] (Vasicek model) and [0.03 0.5 0.15] (CIR model)
were used as starting points in the numerical optimization.

Results are in the following tables

Moore-Penrose pseudoinverse of real valued matrix A is defined as the matrix AT satisfying
following criteria:
i. AATA=A
ii. ATAAT =A
iii. (AAT) = AAT
iv. (ATA)Y =ATA.
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Vasicek Model

True values 6 = 0.03 k = 0.5 and o = 0.0367
ML MEL EEL
Mean Bias
) 4.1495E-004 4.2457E-004 4.2252E-004
K 6.4294E-003 6.5863E-003  6.5411E-003
o 5.6962E-005 5.5853E-005 -1.1096E-005
Standard deviation
) 2.8175E-003 2.8287E-003  2.8322E-003
K 4.2991E-002 4.3189E-002 4.3282E-002
o 1.0568E-003 1.0612E-003 1.0617E-003
RMSE
4] 2.8478E-003 2.8604E-003  2.8635E-003
K 4.3469E-002 4.3689E-002 4.3773E-002
o 1.0583E-003 1.0627E-003 1.0618E-003

Cox-Ingersoll-Ross Model

True values 0 = 0.03 kK = 0.5 and o = 0.15

ML QML MEL EEL
Mean Bias
) 2.8216E-004 3.1435E-004 3.3184E-004 3.3701E-004
K 6.0902E-003 6.6657E-003 7.2612E-003  8.3903E-003
o 1.7335E-004 1.4081E-004 2.4684E-004 -6.7843E-005
Standard deviation
) 2.3778E-003 2.8270E-003 2.8866E-003 2.8721E-003
K 4.3983E-002 5.1322E-002 5.1985E-002 5.1731E-002
o 4.3338E-003 4.9144E-003 4.8903E-003 4.8733E-003
RMSE
) 2.3944E-003  2.8445E-003 2.9056E-003  2.8919E-003
K 4.4402E-002 5.1752E-002 5.2489E-002  5.2407E-002
o 4.3372E-003 4.9164E-003 4.8965E-003  4.8738E-003
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The results are in accord with asymptotic efficiency of ML, as expected. Inter-
estingly, for the diffusion parameter ¢, EEL provided the best absolute mean bias,
even better than ML. MEL and EEL provide competitive performance to QML.
In our opinion the advantage of these two methods is clearer intuition behind the
semi-parametric EL approach.

A table below shows the approximated mean CPU time for every parameter

estimation.

CPU time in seconds
Vasicek Model

ML MEL EEL
0.1594 3.8919  5.9029

Cox-Ingersoll-Ross Model
ML QML MEL EEL
1.0066 0.1654 3.9534  5.8267

Replacing inversion by the Moore-Penrose pseudoinversion in computation of
EEL increased CPU time and consequently diminished the computational advan-

tage of EEL. Another interesting fact is that QML estimation was extremely fast.

4.3 Sensitivity to starting point

To test how robust are the estimation techniques to choice of starting point, we
used different starting points, keeping an interest rate series fixed. This is impor-
tant if the next step is a calibration of the model on a real data. All estimation
methods ML, QML, EL and EEL were very resistant to change of starting point.
An instability started to occur when the diffusion parameter was very low, close to
zero (6% of the original value). In these cases ML and QML failed to converge and
diffusion parameter in EEL was estimated with opposite sign. This might indicate
an advantage of MEL, since insensitivity to choice of starting point might be crucial

when calibrating the model on real data.
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Chapter 5
Real-Data calibration

Euro Overnight Index Average (EONIA) was chosen for calibration of CIR model.
The period is from 1.1.2008 to 6.10.2008 (200 working days). Note that the steep
fall in interest rate caused by financial crisis after the September is omitted, since
non-standard techniques has to be used to model non-standard behavior of the real

world.

EONIA 2008
0.05 \ \

0.045

0.04

0.035

0.03

0.025

1 1 1
50 100 150 200 250

0.02 L L
0

EONTIA series for year 2008, red part is omitted from the estimation.

5.1 Starting point

When calibrating real data, choice of the starting point is crucial. We use Ordinary
Least Squares Estimate (OLS) on discretized version of (3.3)), Matlab implementa-

tion is done in [Kla07], time increment is set to 1.

Tyl — Ty = (5 - K/T’t) + U\/?Ttﬁt, (51)
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where ¢€; is a white noise.
Equation (5.1)) can be transformed into

Tl 7T — R/ + O€. (5.2)

T

The initial estimates of § and k can be found by minimization of the residual sum

of squares

N-1
A . Tty1 —
0, k) = arg min g —i—m/r 5.3

and the diffusion parameter o is estimated as the standard deviation of residuals.

Using basic algebra we obtain the initial estimates (5, R,0)

Nlrt
(v )Zt 1 Tt+1 — Zt 1 7'-:1 Zt 1 T
N2 2N 41 -y S0Vt

t=1 1y

>

N—1 N—-1 Tt
N—2N—|—1+Zt1rt+1zt:1 Tlt ZtlrtZtl T_t_< _1> t=1 r-:l

x>
I

N2—2N+1-Y 2 0t L

2 ( \/_ \/_ + /4\/7“_15)

Q>
I

N 2

5.2 Estimation Results

As it was pointed out by Kladivko [KIa07], numerical issues might arise when using
function besseli(.,.) in Maximum Likelihood estimation. Kladivko suggests to
use directly density of non-central chi-square distribution, which is implemented in
Matlab as a function ncx2pdf (., .). This increased stability of ML.

Results from the estimations are in the following table:

EONIA 2008 - CIR

start(OLS) ML QML MEL EEL
) 0.01020  0.01159 0.01175 0.01042 0.01113
ko 0.24819  0.28203 0.28581 0.25352 0.27137
o 0.00514  0.00586 0.00589 0.00574 0.00579
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The next table compares mean and standard deviation of the data with the
marginal (steady state) mean and variance standard deviation using ({3.7)) for differ-
ent estimators. Note that for "good” estimators these values should approximately

match.

Real and implied mean and standard deviation

DATA  start(OLS) ML QML  MEL EEL
mean  0.04107  0.04110  0.04110 0.04110  0.04110  0.04102
st. dev. 0.001616  0.001480  0.001582 0.001578 0.001635 0.001592

MEL is slightly different from other estimators, but implied standard deviation
is closer to the one computed from data. The graphical representation of likelihood
funcions for different estimators is included in Appendix (chapter . Conclusion
of this calibration is that MEL and EEL provided reasonable alternative to ML
and QML.
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Chapter 6

Estimation of parameters of VEJ
model by EL with conditional

characteristic function

Not for all models of interest rate the conditional density can be obtained in explicit
form. Consequently, it is not possible to rely on Maximum Likelihood method for
estimation of parameters of the models. However, if there is an information in
form of estimating equations, it can be exploited for estimation by the Empirical
Likelihood method. For some interest rate models for which there is no explicit form
of conditional density, there might be explicit form of Conditional Characteristic
Function (CFF) which can be utilized in formulating a set of estimating equations.
For instance Vasicek Exponential Jump model is such a model and we will show
this approach on VEJ. The idea of combining EL with estimating equations based
on CCF comes from [LNOS].

Define CCF of process as

(w,T]0,1) = Ee(ew””h’t).

Note that there is one-to-one correspondence between CCF and underlying
conditional density, therefore CCF captures all the information about the dynamics
of the interest rate movement. According to Das and Foresi [DF96], CCF of the

VEJ takes the following form (time increment 7 was set to 1)

2 .2

wo
Pl ) = AN, ) = B ey - ET (1 o)
K K
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)\ 1 B 2 /\ 1 2.2, —2K
_i_l(Tﬁ)(arctan(waen) — arctan(woz)) + ﬁ IOg (%) ’

B(w) = iwe™,

where (3 was set to 1, so that there are only upward jumps.

Once we know CCF we can construct following conditional moments

E R (w|w,ry) — exp(iwrir))|ry] = 0,
ESW(wlw,r) — exp(iw, req1))|re] = 0,

so both real an imaginary part must equal zero.
The idea of approximating conditional moments by the sequence of uncondi-
tional ones comes from Donald et al. [DINO3].

Intuition behind this is expressed by this impication:
E(risalry) = 0= E(ryalg(re)) = 0.

So the information about CCF can be transformed into unconditional moment
restrictions [LNOS]

E [Re(Y(w|w, ) — expliwri1)) @ qx(ry)] = 0,

EIm(y(w|w, ) —exp(iwri1)) @ gr(ry)] = 0,

where ® denotes kronecker product and g () is vector of approximating functions.

In [LNOS|, ¢k (z) is chosen as follows

QK(:E) = (17 27 $27 1:37 1x781 (LC - 51)37 AR 1xsz,3,1 (LC - $K7371)3>7

where s; are the points set empirically.
Note that several things are subject to empirical choice in this estimation
method:

e we have to choose vector of approximating functions (qx and s;)

e we need to decide in which w will we evaluate the moment functions ([LNOS]
set w = [0.1 0.3 0.7 1.1 1.5])
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e we need to choose appropriate time increment and sample size, since the

computation is numerically very demanding.

Computing MEL using the information about CCF on real data might be chal-
lenging, but nowadays computational complexity allows us to provide it only on
simulated data. The starting point in the optimization had to be very close, so it
was set directly as the parameter from simulation.

We tried to move the starting point and found out that for the one fixed interest
rate series even a very slight change (0.1%) of the starting value lead to different
function values. In the light of these facts there might be a doubt whether the

computed values are true MEL. Several reasons can explain these finding [T}
e The objective function for MEL is very flat

e We do not know the shape of the objective function with parameters faraway

from the true values

e [t is dificult to estimate a jump process because the intensity is low, we can

not observe so many jumps
e The process do not satisfies the assumptions of asymptotic theory
e Maybe we need better optimization tool.

Therefore when the closed form of conditional mean and conditional variance
are known, we propose using moments from instead of those based on CCF,

since the former lead to estimation method which is more stable and reliable.

!The author is grateful to Dr. Q. Liu for these (and many other) helpful comments.
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Chapter 7
Summary

The thesis explores possible applications of Empirical Likelihood for estimation of
parameters of interest rate diffusion processes.

A Monte Carlo study of small sample properties was conducted in order to
compare performance of the Maximum Likelihood and Quasi Maximum Likelihood
estimators with that of Maximum Empirical Likelihood and Euclidean Empirical
Likelihood estimators under conditional mean and variance estimating equations.
This was done for both Vasicek’s model and Cox-Ingersoll-Ross model.

Singularity problems in computations of Euclidean Empirical Likelihood were
resolved by means of the Moore-Penrose pseudoinverse, which, in turn, adversely
affected speed of computation of the estimator. The Monte Carlo study revealed
that both MEL and EEL provide competitive performance compared to asymptot-
ically efficient parametric ML. Furthermore MEL appeared to be more stable than
ML in some scenarios.

Calibration of EONIA interest rates for year 2008 indicates that MEL and EEL
can be considered as a competitive alternative to widely used ML and QML.

Finally, it was shown that a recent application [LNO§| of EL with estimating
equations that are based on Conditional Characteristic Function faces a serious nu-
merical instability problem, which renders results of the simulation study presented
in [LNO8|] unreliable.
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Chapter 8

Appendix

8.1 Likelihood functions from real-data calibra-

tion

8.1.1 Fixed delta

Maximum Likelihood (6=0.01159) Quasi-Maximum Likelihood (3=0.01175)

1080 4 Optimum

# =0.28581
a =0.00589

Log-Likelihood

Optimum

— §.=0.01042
20 K =0.25352
o =0.00674

|
B
o a
o o

Log-Likelihood
g
u o
o o

Log-Likelihood
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8.1.2 Fixed kappa

Maximum Likelihood (k=0.28203)

Quasi-Maximum Likelihood (k=0.28581)

§ =0.01175
K =0.28581

o =0.00589

Log-Likelihoot
Log-Likelihood

0.013

Log-Likelihood
Log-Likelihood

8.1.3 Fixed sigma

Maximum Likelihood (0=0.00586)

Quasi—Maximum Likelihood (0=0.00589)

Optimuin Optimum

8 8 =0.01175
e =0.28581
o =0.00589

=
15
S
=}

©
=
=}

Log-Likelihood
Log-Likelihood

©
=
o

0.011
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Log-Likelihood

Maximum Least Squares Likelihood (0=0.00579)

Optimum
~2006=0.0i113
K =0.27137
~400 0 =0.00579
-600
-800
-1000

-1200

-1400
0.3

0.012

0.0105
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Log-Likelihood

Maximum Empirical Likelihood (6=0.00574)

Optimum

0.0115
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