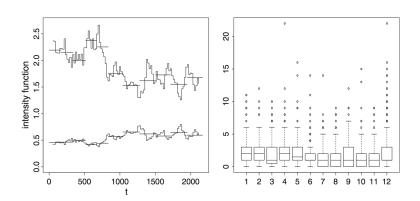

Danish Fire Data Example based on Mikosch: Non-Life Insurance Mathematics (pp. 32-28)

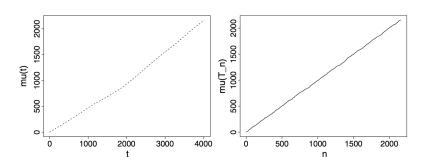
Lukáš Lafférs


KM FPV UMB www.lukaslaffers.com

Arrival times and Interarrival times

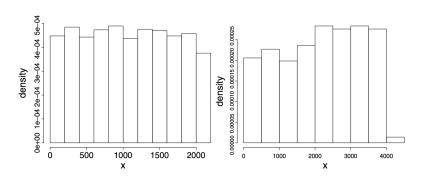
- Danish fire insurance data 1980 1990
- n = 2167 observations
- overall sample mean = 1.85

Intensity

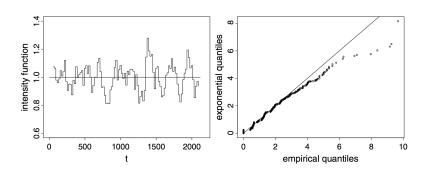

- Left upper: Annual expected inter-arrival times (moving averages), lines correspond to expected inter-arrival times
- Left lower: Estimates of Poisson intensities (note that it increases in time)
- Right: Boxplot of interarrival times for different years

Data - Interarrival Times

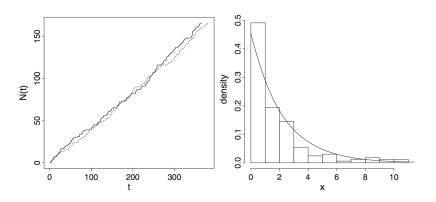
year	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	all
sample size	166	170	181	153	163	207	238	226	210	235	218	2 167
\min	0	0	0	0	0	0	0	0	0	0	0	0
1st quartile	1	1	0.75	1	1	1	0	0	0	0	0	1
median	2	2	1	2	1.5	1	1	1	1	1	1	1
mean										1.55		
$\hat{\lambda} = 1/\text{mean}$	0.46	0.46	0.50	0.42	0.44	0.57	0.65	0.62	0.58	0.64	0.59	0.54
3rd quartile		3	3		3	2	2	2	3	2	2	3
max	11	12	10	22	16	14	14	9	12	15	9	22


d

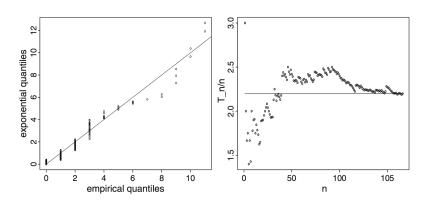
Transformed Process


- Left: Mean value function $\mu(t)$
- Right: Transformed process $\mu(T_n)$

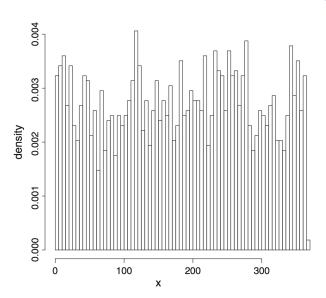
Histogram of values of $\mu(T_n)$ vs T_n


- Left: Histogram of values of $\mu(T_n)$ (looks like uniform distribution)
- Right: Histogram of values of T_n (does not look like uniform distribution)

Is Poisson Process appropriate?


- Left: Moving average estimate of intensity function corresponding to the transformed sequence $\mu(T_n)$ (note that it fluctuates a lot)
- Right: QQ-plot of $\mu(T_n) \mu(T_{n-1})$ against the Exp(1) (in data we see heavier tail than the one of exponential distribution)

1980 Data only


- Left: Data vs One sample path of Poisson with $\hat{\lambda}^{-1} = 2.19$
- Right: Histogram of inter-arrival times vs. $Exp(\lambda)$

1980: QQ- plot

- Left: QQ-plot of $T_n T_{n-1}$ against the $Exp(\lambda)$ (not great but not horrible either)
- Right: For a homogenous Poisson process: $\frac{T_n}{n} \to \lambda^{-1}$ a.s. by the SLLN

Seasonality

