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INTRODUCTION

The partial identification literature relates to situations in which data, together with

the economic model, do not uniquely determine the parameter of interest. In such

situations, the parameter is partially identified. There is a set of possible values of

the parameter that cannot be refuted by the economic model, an identified set. Tradi-

tionally, most economic models include assumptions that guarantee that there exists

a unique parameter value that is compatible with the data and the economic model,

so the parameter is point identified. Assumptions about functional forms or distribu-

tional assumptions are often not based on theoretical grounds, but their sole purpose

is to guarantee the point identification. It is interesting to consider what we can

learn about the parameter of interest from the economic model alone, leaving these

ad hoc assumptions aside. This should ultimately lead to a more credible inference,

but it often comes at the cost of the loss of the point identification, which may intro-

duce computational and statistical challenges. There is also a trade-off between the

strength of the assumptions and the credibility of the analysis.

”The law of decreasing credibility: The credibility of inference decreases with the

strength of the assumptions maintained.” Manski (2003).

Policy makers facing a decision may consider an identified set as undesirable,

compared with a point-identified model. Yet it seems more prudent to choose a

policy from the set of admissible policies according to some transparent rule (e.g., to

consider the worst case scenario) than to leave the ad hoc assumptions to make the

choice for us instead.

There are two different ways to approach identification. The first is to start with

a point-identified model and then examine how different assumptions affect the size

of the identified set. The partial identification literature provides useful tools for
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studying model uncertainty, misspecification, sensitivity analysis and missing data.

Knowledge of the strength of the underlying assumptions helps to direct the discus-

sions toward the relevant parts of the economic model. Another option is to examine

what can be learned from the data alone and then observe how different assumptions

change the identified set, as advocated in Manski (1995, 2003).

Here we only introduce the central concepts in the partial identification literature.

Tamer (2010) provides a comprehensive review of the history of thought on the topic.

Partial identification offers clear separation between two important and distinct

issues: identification and statistical inference. Identification considers the following hy-

pothetical situation: if we knew the true probability distribution of the observed

variables (or had a data sample of infinite length), what could we learn about the

parameter of interest? Once the identification issue is resolved, it is possible to con-

sider statistical inference; that is, how the imperfect data affect the conclusions drawn.

The first essay of this thesis addresses the question of identification in models with

discrete variables, the second essay considers the statistical inference of the param-

eter of interest and the third essay applies these results to an empirical application.

The fourth chapter is a note that uses the method to point out that conditional and

unconditional identifying assumptions are often confused in the applied literature.

The following subsections present the contributions in greater detail.

Chapter 1: Identification in Models with Discrete Variables

Chapter 1 introduces a novel identification method that can determine the identified

set in models with discrete variables. This method can replicate some existing results

in a straightforward manner, as well as address new problems, and it shows how

imperfect instruments affect the size of the identified set, when the strict exogeneity

assumption is relaxed. The method is an extension of the partial identification frame-

work of Galichon and Henry (2009a), and it is simple and computationally tractable,

and provides a unifying framework that approaches identification in an algorithmic

fashion.
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Chapter 2: Inference in Partially Identified Models with Discrete

Variables

The problem of statistical inference in partially identified models was not addressed

in the first chapter. Chapter 2 addresses this problem for a partially identified scalar

parameter in models with discrete variables. This paper presents different meth-

ods for inference and discusses their advantages and disadvantages. A Monte Carlo

simulation study compares the finite sample properties of different methods in eco-

nomically relevant economic scenarios. The chapter concludes with some practical

implementation recommendations on how to implement the inference in this context.

Chapter 3: Bounding Average Treatment Effects using Linear Pro-

gramming

Chapter 3 shows how the modified identification method from the first chapter can

determine the sharp bounds on the average treatment effect under identifying as-

sumptions commonly used in the literature. This method provides a way to conduct

sensitivity analysis for the identifying assumptions and missing data in an empirical

application concerning the effect of parent’s schooling on a child’s schooling (de Haan,

2011).

Chapter 4: A Note on Bounding Average Treatment Effects

published in Economics Letters 2013, 120, (3), 424-428

Using the linear programming identification framework from the first paper, it is

possible to gain deeper insight into the source of the identification power. Two com-

monly made assumptions in empirical studies imply bounds on the average treatment

effect that differ from those commonly reported in the applied literature. Instead, one

of the assumptions should hold conditionally on the value of a specific variable. Chap-

ter 4 explains the difference between the reported bounds and the correct bounds in

detail, and shows why it matters, using an empirical example from de Haan (2011).

Based on the analysis in this chapter, we recommend that the required conditioning

should be stated explicitly.
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Chapter 1

IDENTIFICATION IN MODELS WITH

DISCRETE VARIABLES

Abstract

This paper provides a novel, simple, and computationally tractable method for deter-

mining an identified set that can account for a broad set of economic models when the

economic variables are discrete. Using this method, we show using a simple example

how imperfect instruments affect the size of the identified set when the assumption

of strict exogeneity is relaxed. This knowledge is of great value, as it is interesting to

know the extent to which the exogeneity assumption drives results, given it is often

a matter of some controversy. Moreover, the flexibility obtained from our newly pro-

posed method suggests that the determination of the identified set need no longer be

application specific, with the analysis presenting a unifying framework that algorith-

mically approaches the question of identification.

JEL: C10, C21, C26, C61.

Keywords: Partial identification, Linear programming, Imperfect instruments.
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1.1 Introduction and Motivation

Identification plays a central role in economic research. In most economic models,

we introduce latent variables, such as unobserved heterogeneity, ability, or preference

shocks, to explain relations of interest, such that the model best mimics reality. Given

data that reveal the distribution of observable variables, we would prefer to learn as

much as possible about the relations or features of the economic model, information

often embedded in an unknown parameter. Unfortunately, as latent variables are not

directly observable, we need to make certain assumptions about them in order to use

data to say something about an unknown parameter or some feature of interest. De-

pending on the strength of these assumptions, knowledge of the true data-generating

process for the observed variables can then be any of the following: (1) no identifying

power, (2) a contraction of the set of potential parameter candidates, such that the

model is partially identified, (3) the assumptions are sufficient to identify one poten-

tially true parameter, such that the model is point identified, or (4) the assumptions

are too strict and the model can be refuted.

In practice, we often require strong assumptions to guarantee point identification.

However, such assumptions could include knowledge of the family of probability

distributions of unobserved variables, information we can rarely justify on economic

grounds. The only reason is to make inference tractable. It is then interesting to ques-

tion what would happen had these restrictions not been imposed, and then attempt

to develop an inferential procedure that is robust with respect to assumptions that are

sometimes controversial or made purely for technical convenience. The first necessary

step is to know what set of models (or parameters) are compatible with both the set of

assumptions made and the data in situations where we have perfect information on

the probability distribution of observable variables, that is, where our data sample is

of infinite length. This is the question of identification. Once this is resolved, we can

proceed to inference and identify how to use imperfect data to construct confidence

regions or hypothesis tests.

The contribution of this paper is threefold. First, we present a new simple identifi-

cation method. Second, we show how this method nests several existing results from

the literature. Third, we show how this method approaches identification in cases

when the strict exogeneity of instruments is relaxed. The main advantage over the ex-
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isting literature is that the economic model is not restricted to the linear form, while

at the same time controlling for the degree of violation of the exogeneity assumption.

This paper presents a new method as an extension of an existing framework by

Galichon and Henry (2011, 2009a) and Ekeland, Galichon, and Henry (2010) (hence-

forth, the GH framework) that traces the identified set in a richer set of economic

problems when the observed variables are discrete. As a motivating example, we

consider the impact of a violation of the strict exogeneity assumption in a single-

equation endogenous binary response model. By complementing existing results on

imperfect instruments in Nevo and Rosen (2012), Conley et al. (2012), this method can

control for departures from the strict exogeneity of the instrument, and permits us to

study nonlinear models.

The proposed method is also able to reproduce some other results in the partial

identification literature obtained using different approaches. These include the single-

equation endogenous binary response model in Chesher (2009) and Chesher (2010),

the triangular system of equations with binary dependent variables in Shaikh and

Vytlacil (2011), treatment effects in studies with imperfect compliance as in Balke and

Pearl (1997), and binary choice models with zero-median restrictions as in Komarova

(2013). In the first and fourth examples, the original GH framework1 also applies,

but our extension helps us to formulate the problem in such a way that it is possi-

ble to relax the strict exogeneity of instruments more simply, as in Section 1.4. In the

remaining examples, the extension is essential, as we cannot formulate some of the as-

sumptions made within the original GH framework. The present extension therefore

enriches the set of problems we can address.

The major advantage of this new method is its algorithmic structure: that is, the

identifying restrictions enter the setup in a straightforward manner and it employs

effective algorithms to determine the identified set. Instead of using distinct strategies

for different applications, this method thus provides a unifying framework that is

conceptually simple. As the framework presented is not application specific, it thus

applies to a wide range of problems including discrete variables when identification

is only partial.

1With some modification.
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Of course, we also recognize several limitations of the proposed method. First,

the method describes how we find the identified set given perfect information on the

data-generating process of the observed variables, yet we do consider inference here.

Second, we restrict the observable variables in the model to be discrete. While we can

discretize models with continuous observable variables, this will always bring about

some degree of arbitrariness in the problem, and we do not consider the impact of

this here. However, while we do not restrict the unobservable variables to be discrete,

we can always transform a continuous unobservable variable into a discrete form, and

we show that this will not affect the identified set.

Manski (1990) initiated the study of partial identification. However, these ideas

were not fully appreciated at first. Recent studies include Manski (1995) and Man-

ski (2003), with useful surveys of this literature by Manski (2008) and Tamer (2010).

Among the many interesting applications, the most notable include recent work on

the returns to schooling (Manski and Pepper, 2000), the demand for fish (Cher-

nozhukov et al., 2009), and discrete choice with social interactions (Brock and Durlauf,

2001). Determination of the identified set is examined in Galichon and Henry (2011,

2009a) by means of an optimal transportation formulation, in Beresteanu and Molinari

(2008), Beresteanu et al. (2012, 2011), and Chesher, Rosen, and Smolinski (2013) using

random set theory, and in Chesher (2010) using structural quantile functions. Read-

ers interested in statistical inference in the partially identified setting are directed to

Galichon and Henry (2011, 2009a), Chernozhukov, Hong, and Tamer (2007), Imbens

and Manski (2004), Beresteanu and Molinari (2008), Beresteanu et al. (2012, 2011),

Chernozhukov, Lee, and Rosen (2013), Andrews and Shi (2013), Romano and Shaikh

(2010),Bugni (2010), and Rosen (2008).

The remainder of the paper is structured as follows. Section 1.2 describes the

identification strategy in GH using the proposed extension. In Section 1.3, we pro-

vide examples of how the extended framework can nest the different identification

approaches. Section 1.4 explains how we can modify one of the examples to consider

the impact of imperfect instruments. Section 1.5 concludes the paper and the appen-

dices provide the proofs (Appendix 1.6), technical details on the examples presented

(Appendix 1.7), and discussion of some of the implementation issues (Appendix 1.8).
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1.2 Methods

This section first explains the basic elements of the partial identification framework in

GH, and then motivates and presents our extension.

1.2.1 GH’s Framework

Here we present the basic components of the GH identification setup. Let

• Y ∈ Y be a random vector of observable variables with probability density

function or probability mass function (pdf or pmf) p,

• U ∈ U be a random vector of unobservable variables with pdf or pmf ν, and

• G : U 7→ Y be a measurable correspondence2 that restricts the co-occurrence

of pairs (Y,U) to those that are compatible with the economic model at hand,

formally Y ∈ G(U). This represents how economic restrictions are modeled

within the GH setup.

The fact that G is a many-to-many correspondence enables us to work with cen-

sored data (for a given Y we contemplate different values of U) or multiple equilibria

(for a given U, we consider different values of Y). Figure 1.1 illustrates many-to-

many mapping G. Note that point identification is typically achieved if both Y and U

are continuous and the inverse of the many-to-many mapping G−1 is a function. In

this case, knowledge of the probability behavior of the observed variables informs us

exactly of the probability of the unobserved component.

We first define the concept of a Structure that groups all available restrictions.

Definition 1. A structure S is defined as a triplet S = (G, ν, p).

Another important notion to be defined is the internal consistency of a structure.

The structure is internally consistent if there exists a joint distribution which poten-

tially could have generated the probability of the observed variables p and the latent

variables ν and that satisfies the economic restriction defined by G almost surely. If

there is no such joint distribution, the structure can clearly be refuted.

2Therefore for all open subsets A of Y , G−1(A) := {U ∈ U : G(U) ∩ A 6= ∅} is well defined.
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Figure 1.1: Illustration of the correspondence G that carries information about the
economic model. The joint distribution of (Y, U) is restricted to have support in the
gray-shaded area with probability one.

Definition 2. Structure S is said to be internally consistent if and only if there exists a

joint probability distribution π of (Y, U) on Y × U with marginal distributions p and ν,

respectively, such that Prπ({Y ∈ G(U)}) = 1.3

In practice, most models are parameterized, so we now consider the situation

when ν = νθ and G = Gθ are parameterized with a vector of parameters θ ∈ Θ,

where Θ ⊆ Rd.4 Finally, we define our object of interest, the identified set. This is the

collection of all parameters θ that guarantee the internal consistency of the structure.

Definition 3. An identified set for θ, ΘI(p), is defined as

ΘI(p) := {θ ∈ Θ : (Gθ, νθ, p) is internally consistent}.5

Note that all members of the identified set correspond to structures that could

have generated the probability of the observed variables p. In this sense, they are

observationally equivalent, and no amount of data would ever help us to distinguish

between them. The identified set

• could be empty: ΘI(p) = {∅}, hence the structure (Gθ, νθ, p) is refuted for all

θ ∈ Θ,

• may consist of a single point: ΘI(p) = {θ}, in this case θ is point identified,

• can be a subset of Θ: ΘI(p) = {I ⊂ Θ} and θ is partially identified, or

3Definition 1 in Galichon and Henry (2009a).
4The parameter θ may consist of two parts, θ = [θ1, θ2], so we can have Gθ1 and νθ2 .
5Definition 2 in Galichon and Henry (2009a), where the dependence of the identified set ΘI(p) on

the distribution of observable variables p is made explicit.
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• may not shrink Θ at all: ΘI(p) = Θ, so the structure (Gθ, νθ, p) places no identi-

fying restrictions on θ.

For a fixed parameter θ, if all variables in the model are discrete, the problem of

finding a joint distribution of (Y, U) compatible with the economic model described

by Gθ with appropriate marginals can be formulated as a linear program as shown.

Note that in most economic applications, the latent component U is continuous. If the

observed variables are discrete, it is, however, possible to discretize U in a way that

leaves the identified set unchanged as proved in Galichon and Henry (2011). Suppose

Y = {y1, ..., yi, ..., yn} with corresponding probabilities pi, U = {u1, ..., uj, ..., um} with

probabilities νj. The economic model enters the problem as a set of restrictions on

the support of (Y, U). Let us define a zero-one penalty on the support of all joint

probabilities on Y ×U:

cij = 1(yi /∈ Gθ(uj)) =





0, if yi ∈ Gθ(uj),

1, otherwise,

so a penalty is put on those pairs (Y, U) that are incompatible with the economic

model. The n×m matrix of the zero-one penalties {cij} carries the same information

as the mapping Gθ(.) and we denote the nm vector of this stacked matrix as c.

Now, the question of the existence of a joint probability distribution that assures

internal consistency can be answered by means of the following linear program:6

min(π) ∑i,j πijcij

s.t.

∑j πij = pi, ∀i (1.1)

∑i πij = νj, ∀j (1.2)

πij ≥ 0, ∀i, j, (1.3)

where the minimum is taken across all joint probability distributions π (nm vector of

the stacked n × m matrix with elements {πij}). A structure is internally consistent

if and only if the optimized value of the objective function is equal to 0. If this is

the case, it means that we have found a proper joint distribution π that is compatible
6The dependence of cij and νj on parameter θ is omitted for the sake of brevity.
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with the data (1.1) and the assumptions made on the latent variables (1.2), and the

probability of an event not being compatible with the economic model is zero.

The necessary and sufficient condition for the inclusion of the parameter θ in the

identified set is:

0 = max
A⊂Y

(Pr(A)− νθ(G−1
θ (A))), (1.4)

where the maximum is taken across all possible subsets of Y . A similar result was

first proven by Artstein (1983), and is based on an extension of the Marriage Lemma.

Alternative proofs of (1.4) were given in Galichon and Henry (2009a), which relied

on optimal transportation theory, and in Henry et al. (2011) based on combinatorial

optimization methods. Equation (1.4) can then also be used for hypothesis testing or

building confidence regions for θ, as proposed in Galichon and Henry (2009a) and

Henry et al. (2011). The latter allows for efficient confidence regions construction

using a combinatorial bootstrap.

The properties of the approach are as follows.

• It offers a flexible procedure to access many problems when partial identification

occurs.

• For discrete cases, its linear program nature makes it computationally conve-

nient.

• If only U is continuous, the problem can be transformed into a discrete form.

• The economic model is described by restrictions on the support of observables

and unobservables.

1.2.2 Extension of the GH Framework

We aim to extend the GH method to entertain additional distribution restrictions.

Even though the GH setup can address many problems, we are unable to formulate

certain types of problems within the GH framework. There are two ways in which

our prior information can enter the structure: first, via the marginal distribution of the

unobservables ν, and second, through the support of (Y, U) via the correspondence G

(or equivalently c). However, not all distributional assumptions we can conceive can
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enter the structure, because in many economic models some notion of independency

is assumed.7

Because the problem is accessed at the lowest level, by constructing a joint dis-

tribution compatible with all the information a researcher may have, it is possible

to restrict this joint distribution to satisfy any type of distributional assumptions one

may wish to make. If the distributional assumption can be written as a linear function

of the joint probability π, the problem remains computationally attractive. Modeling

the joint distribution gives full control over utilizing the information at hand. This

flexibility delivers a solution to cases where the GH setup is too restrictive, and this

is the main contribution of the present analysis.

For illustrative purposes, suppose that in addition to information about G, we

know that E(φθ(Y, U)) = 0 and |cov(Y, U)| ≤ 0.1. Such assumptions simply can-

not be formulated as a restriction on the support of (Y, U), so there is no way that

these assumptions can be embedded into the framework via G or ν. In this sense,

the original GH framework is too restrictive. Instead, the way to incorporate these

assumptions is simply to restrict the set of joint distributions (all π-s) to only those

that are compatible with this piece of information.

The question of whether the extended set of restrictions is compatible with the

observed data then reduces to checking whether the optimized value is equal to zero

7We may be willing to make some assumptions about the distribution of variables in the form of
moment equality or inequality. It is important to note here that the GH setup can handle moment
inequalities E(φ(Y)) ≤ 0 if E(m(U)) = 0 is assumed (Ekeland et al. (2010) and Henry and Mourifié
(2013)). In this case, the correspondence G is restricted to take a specific form. However, within the
GH framework, it is not possible to consider moment inequality and further information given by G.
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in the following linear program:

min(π) ∑i,j πijcij

s.t.

∑j πij = pi, ∀i

∑i πij = νj, ∀j

∑i,j πijφθ(yi, uj) = 0, (1.5)

∑i,j πijyiuj −∑i piyi ∑j νjuj ≤ 0.1, (1.6)

−∑i,j πijyiuj + ∑i piyi ∑j νjuj ≤ 0.1, (1.7)

πij ≥ 0, ∀i, j.

Equation (1.5) restricts the joint distribution π to satisfy E(φθ(Y, U)) = 0, whereas

inequalities (1.6) and (1.7) ensure that |cov(Y, U)| ≤ 0.1 is satisfied.

As another example, suppose we have two observed variables Y = (X, Z) with

probabilities pij and an unobserved variable U, but instead of assuming full knowl-

edge of its distribution, we assume that it has zero mean, that its 75% quantile is 0.8,

and that it is independent of Z. We now formulate the problem as follows:

min(π) ∑i,j,k πijkcijk

s.t.

∑k πijk = pij, ∀i, j

∑i,j,k πijkuk = 0,

∑i,j,k πijk1(uk ≤ 0.8) = 0.75,

∑i πijk −∑i pij ∑i,j πijk = 0, ∀j, k

πijk ≥ 0, ∀i, j, k.

These examples are somewhat artificial, but explain the main point well. Econom-

ically interesting examples follow in Section 1.3. It is important to note that if the

additional constraints are such that the problem lies within the linear programming

framework, it remains computationally feasible.
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The crucial step is to prove that the discretization of the unobserved variables is

possible even when additional distributional restrictions are entertained. This is done

for a certain class of distributional restrictions, and is discussed in detail in Subsection

1.2.3, with the proof given in Appendix 1.6.

We now state the proposed extension formally. We recall that Y and U are the sup-

ports of the discrete observable variable and the continuous or discrete unobservable

variables, respectively. The set of all probability distributions on Y × U is denoted

by Π(Y , U), and ψθ(Y , U, p, ν) is the set of all π ∈ Π(Y , U) satisfying additional re-

strictions imposed. If information about the probability distribution ν of unobserved

variables is not available, we have ψθ(Y , U, p, .). The set of all restrictions imposed

is then compatible with the data if and only if the optimal solution for the following

optimization procedure is zero:

min(π) π{1(Y /∈ Gθ(U))}

s.t.

π{1(Y = yi)} = pi, ∀i

π ∈ ψθ(Y , U, p, ν).

Note that if U is discrete and the set ψθ consists of restrictions that are linear in π,

linear programming routines may be used.

The additional restrictions for the two examples given above are:

ψθ(Y , U, p, ν) =





π ∈ Π(Y , U) :

∀u ∈ U : π{1(U = u)} = ν(u),

Eπφθ(Y, U) = 0,∣∣∣EπYU −∑i piyi ∑j νjuj

∣∣∣ ≤ 0.1





(1.8)

and:

17



ψ(X × Z, U, p, .) =





π ∈ Π(X × Z, U) :

EπU = 0,

Eπ1(U ≤ 0.8) = 0.75,

∀z ∈ Z, ∀u ∈ U : π{1(Z = z, U = u)} =
= ∑i pijπ{1(U = u) }





,(1.9)

where in the second example Y = X × Z and ψ does not depend on θ.

We now redefine the notion of structure and the identified set. To enrich the con-

cept of the original structure, we denote a triplet (G, ψ, p) as a Generalized Structure,

which groups all the restrictions placed on π.

Definition 4. A Generalized Structure S is defined as a triplet S = (G, ψ, p).

Internal consistency and identified set are then defined similarly as in definitions

2 and 3.

Definition 5. A Generalized Structure S is said to be internally consistent if and only if there

exists a joint probability distribution π of (Y, U) on Y × U in ψ(Y , U, p) with Y-marginal

distribution p such that π({Y ∈ G(U)}) = 1.

Definition 6. An identified set for θ, ΘI(p), is defined as

ΘI(p) := {θ ∈ Θ : (Gθ, ψθ, p) is internally consistent}.

We refer to this formulation as the extended GH framework. If the latent variable

U is discrete and the set ψ can be written as linear restrictions in π, we can employ

effective algorithms to solve this linear program.

1.2.3 Discretization of Unobserved Variables

In most economic problems, the unobserved component is continuous. Hence, in or-

der to make the search in the space of joint probability functions tractable, it may

be convenient to discretize the unobserved component and then show that this dis-

cretization leaves the identified set unaffected. This is not true in general. We show

that if the distributional restrictions ψ take specific forms that nest all of the examples

presented in this paper, the discretization of the unobserved variable is possible and

harmless. These sets of restrictions for problems with continuous unobservables are:
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ψ1(Y , U, p, ν) =





π ∈ Π(Y , U) :

∀u ∈ U : π{1(U = u)} = ν(u),

∀I ∈ I; ∀u ∈ U :

|∑i∈I π(yi, u)−∑i∈I piν(u)| ≤ α ∑i∈I piν(u)





,

(R1)

and:

ψ2(Y , U, p, ·) =





π ∈ Π(Y , U) :

Eπφ(U) = 0,

∀I ∈ I; ∀u ∈ U : |∑i∈I π(yi, u)−
−∑i∈I piπ{1(U = u)}| ≤ α ∑i∈I piπ{1(U = u)}





,

(R2)

where φ : U 7→ M has a finite range M and I is a fixed set of indices.8

The first restriction (R1) requires π to be compatible with the assumed distribution

of unobserved variables and hence nests the original GH framework. The second

restriction helps us to restrict part of the observed component to be independent or

“close to being independent” of the unobserved component, while the first line in

(R2) permits us to work with quantiles of U.9

Let us denote the question of the internal consistency of a generalized structure

(G, ψ, p) with a continuous unobserved variable as P1:

Y discrete with support Y = {y1, ..., yn} and with probability p = {p1, ..., pn},
U continuous with support U (and with positive probability density ν for (R1)),

G : U 7→ Y .

The aim is to find a function π1 : Y ×U 7→ [0, 1] that satisfies:

8If the observed variable is multidimensional we can stack it into a single vector. Summing across
some sets of indices then allows us to formulate a restriction for only one dimension. As an example,
suppose that the observed variables are (Y, X, Z); then, we can place a restriction on X only, so that X
is independent of U.

9The manner in which the independency restriction is relaxed is discussed in Section 1.4.
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n

∑
i=1

∫

u∈U
π1(yi, u)1(yi ∈ G(u))du = 1,

∀i = 1, ..., n :
∫

u∈U
π1(yi, u)du = pi,

π1 ∈ ψ(Y , U, p, ·).

Problem P1 is computationally unfeasible because of its continuous component U. We

can, however, transform the problem P1 with a continuous U to the problem P2 with

a discrete U, such that it will not affect the identified set.

We partition U into subsets that deliver the same G(U) for the set of restrictions

(R1) and into those that deliver the same G(U) and φ(U) for (R2). It is then easy to

show that if we group all Us in these subsets into atoms and proceed as if U were

discrete, the identified set remains unchanged.

Formally, the partitioning of the U space is the following:

G ≡ {∆∗ ⊂ U : ∀gI ∈ ∆∗, ∀gNI ∈ ∆∗C : G(gI) 6= G(gNI)} (PartU1)

for (R1) and:

S ≡ {∆∗ ⊂ U : ∀sI ∈ ∆∗, ∀sNI ∈ ∆∗C : G(sI) 6= G(sNI), φ(sI) 6= φ(sNI)} (PartU2)

for (R2).

The assumption of a finite range of φ is crucial, as it implies a finite S . Let m

denote the cardinality of either G or S , depending on which is in use. Then, a new

random variable U∗ is defined. For every j ∈ {1, ..., m}, we choose a point of support

u∗j to be any u ∈ ∆∗j , a representative of the set ∆∗j :

U∗ ∈ ∆∗1 × · · · × ∆∗m. (U)

To obtain a probability distribution ν∗ of U∗, needed for restrictions (R1), we inte-

grate ν(u) across the corresponding regions ∆∗j of U:
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∀j = 1, ..., m : ν∗j ≡
∫

∆∗j

ν(u)du. (P)

The discretized problem P2 is the following:

Y with support Y = {y1, ..., yn} with probability p = {p1, ..., pn}
U∗ with support U∗ = {u∗1 , ..., u∗m} (with probability ν∗ = {ν∗1 , ...ν∗m} for (R1))

G : U∗ 7→ Y .

The question is then whether there exists a function π2 : Y ×U∗ 7→ [0, 1] such that:

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )1(yi ∈ G(u∗j ))du = 1,

∀i = 1, ..., n :
m

∑
j=1

π2(yi, u∗j ) = pi,

π2 ∈ ψ(Y , U∗, p, ·).

Lemma 1. If (R1),(P) and (PartU1) hold, then a generalized structure (G, ψ(Y , U, p, ν), p) is

internally consistent if and only if a generalized structure (G, ψ(Y , U∗, p, ν∗), p) is internally

consistent.

Lemma 2. If (R2) and (PartU2) hold, then a generalized structure (G, ψ(Y , U, p, ·), p) is

internally consistent if and only if a generalized structure (G, ψ(Y , U∗, p, ·), p) is internally

consistent.

The proofs are in Appendix 1.6. Lemmata 1 and 2 state that for the internal con-

sistency of a generalized structure, the proposed discretization is harmless.

It immediately follows that if G and ψ were parameterized by some θ ∈ Θ, problem

P1 and problem P2 would lead to the same identified set for θ for both (R1) and (R2).
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1.3 Motivating Examples

This section introduces some examples of how the extended GH framework applies

to problems in the partial identification literature. The replication of existing results

illustrates that the proposed extension indeed works. That said, there is no com-

putational gain from employing the present method over the other frameworks that

derive analytical solutions. Rather, the greatest advantage of this method is its gen-

erality. Instead of deriving the identified set and proving that it is sharp from case

to case, we propose a single unifying framework that traces the identified set regard-

less of the application. It is then sufficient to formulate the economic model with

restrictions in the extended GH setup and let the computer do the work. Further, if

additional information becomes available, it is straightforward to incorporate this into

the setup. Unlike the existing application-specific approaches, where incorporating

further restrictions or changing the existing restriction may cause significant difficul-

ties for tracing the identified set, adding additional assumptions or changing existing

assumptions in the extended GH framework is trivial. Moreover, if the distributional

restrictions are linear in the joint probability π, we can employ linear programming

routines. This is particularly interesting, as linear programming is widely understood

and ready-to-use computer codes are readily available.

The four examples presented in this section not only demonstrate that the method

nests several existing identification strategies and can thus replicate their results, but

also illustrate how to formulate the economic problem at hand in the extended GH

framework.

The four considered examples include the single-equation endogenous binary re-

sponse model in Chesher (2009, 2010), the bounds on treatment effects in triangular

models with binary dependent variables (Shaikh and Vytlacil, 2011), studies with

imperfect compliance as in Balke and Pearl (1997), and binary choice models with

zero-median restrictions as in Komarova (2013).

For each example, we first introduce the problem and the notation. We then

present the discretization of the unobserved variables. Afterwards, we formulate the

problem in the extended GH framework. Finally, we compare the results. The orig-

inal identification strategy is briefly outlined in Appendix 1.7, together with selected

technical details on the examples.
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Example 1: Single-equation Endogenous Binary Response Model

The illustrative example of a single-equation endogenous binary response model is

from Chesher (2010). Consider a probit model where the discrete explanatory vari-

able X is possibly correlated with an unobserved U and an instrument Z, which is

independent of U, is available.10 Such a model is in general not point identified.

Suppose that the set of assumptions that define our model is the following:

• Y = 1(U > t(X)) (1.10)

• U ⊥⊥ Z – the unobserved U is independent of the instrument Z

• U ∼ Uni f (0, 1) – U is uniformly distributed on [0, 1] interval

• t(X) = Φ(−θ0 − θ1X) – the threshold-crossing function is assumed to take a

particular form, where Φ(.) is a cumulative distribution function of the standard

normal distribution.11

An interesting question we may ask is the following. Given that we have perfect

information on the distribution of the observables, what can we say about the function

t(X), or equivalently, about the coefficient θ = (θ0, θ1), from our economic model?

Discretization of Unobservables

The discretization as explained in Section 1.2.3 in this case boils down to the dis-

cretization employed by Galichon and Henry (2011) in the original GH setup. This is

because the additional assumption E(φ(U)) = 0 is not present. We demonstrate this

for illustrative purposes.

Suppose that θ1 > 0. Then, the only subsets of (Y, X) that are compatible with

(1.10) are {(0, 0), (0, 1)} for U ≤ t(1), {(0, 0), (1, 1)} for t(1) < U ≤ t(0) and {(1, 0), (1, 1)}
for U < t(0). We assign to these three sets of Us three points (u∗1 , u∗2 , u∗3) with probabil-

ities (t(1), t(0)− t(1), 1− t(0)). A similar procedure applies for θ1 < 0. In Figure 1.2,

we can see the case for θ1 > 0 on the left-hand side and for θ1 < 0 on the right-hand

10In the case when X is continuous, the parameter is point identified and could be obtained by e.g.
STATA’s ivprobit.

11It is possible to determine the lower and upper bound of the threshold-crossing function t(X) with-
out making this parametric assumption as in Chesher (2009), but instead assuming the monotonicity
of t(X). For the sake of simplicity, we present the parametric example.
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Figure 1.2: Discretization of unobservables in example 1.3. The top left-hand-side
panel is for θ1 > 0, while the top right-hand-side panel is for θ1 < 0. The discretized
counterpart is shown immediately below the original continuous formulation of Gθ

in each instance.

side. The upper panes depict the original support restriction Gθ and the lower panes

depict their discrete counterparts.

Formulation in the Extended GH Framework

The distribution of observables (Y, X, Z) is assumed known and is denoted pijk, and

U is assumed to be uniformly distributed [0, 1].12

For a given (θ0, θ1), the aim is to find the joint probability πijkl of (Y, X, Z, U) that

is compatible with the support restrictions and the distributional restrictions, where

the marginals of πijkl are pijk and νl, respectively, and Z and U are independent.

12We could also assume that we observe the probability of Y, X given Z, such that for the sake of
exposition, the probability of (Y, X, Z) is known.
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We define the support restrictions as follows:

cijkl = 1(yi 6= 1(ul > t(xj))) =





0, yi = 1(ul > t(xj)),

1, otherwise.
(1.11)

Therefore, basically, (Y, X, Z, U)s are restricted to those that satisfy (1.10).

We now convert the formulation of the problem into the extended GH framework:

min(π) ∑i,j,k,l πijklcijkl (1.12)

s.t.

∑l πijkl = pijk, ∀i, j, k

∑i,j,k πijkl = νl, ∀l

∑i,j πijkl = ∑i,j pijkνl, ∀k, l

πijkl ≥ 0, ∀i, j, k, l.

If for a given (θ0, θ1) the optimum is achieved at 0, this (θ0, θ1) is added into the

identified set.13 14

Results (binary X)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t(0)

t(
1)

Figure 1.3: Identified set obtained by Chesher’s approach (Chesher, 2010) is compared
with our solution.

13In this case, parameter θ affects the support restrictions (1.10) only.
14Note that even though π is four dimensional, the problem still lies within the linear programming

framework, as the elements of π can be stacked to make a vector of size nY · nX · nZ · nU .
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The identified set is expressed in terms of the threshold-crossing function at 0

and 1, t(0) and t(1), rather than in the parameter space.15 Figure 1.3 illustrates that

the extended GH setup works for instruments in the case of a binary endogenous

variable.

Results (continuous X discretized)

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0
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1

1.5

θ
0

θ 1

Figure 1.4: Chesher’s result Chesher (2009) (Figure 8, p. 37) for problem (1.10) with
parameters given by (1.23) compared with the result obtained by the extended GH
approach.

Figure 1.4 compares the results obtained by Chesher (2009) and the extended GH

framework. Note that even though the shapes of the identified sets are similar, they

differ. We need to develop methods for the discrete approximation of continuous

observed variables in order to obtain reliable results.

Identifying the Power of the Independency Restriction

We can now consider the identifying strength of the independency condition itself.

Figure 1.5 shows the strength of the independency restriction.16 It is clear that this

extra information shrinks the identified region. It is also worth noting that even if

the instruments are entirely endogenous, we exclude some parameter values from the

15In order to avoid confusion with the probabilities pijk of the observed variables, the threshold-
crossing function is denoted t(.) unlike in Chesher (2009), who set it as p(.).

16The meaning with the second-last restriction is omitted: ∑i,j πijkl = ∑i,j pijkνl ∀k, l.
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Figure 1.5: Dark blue – with independency restriction, light blue – without assuming
independency.
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Figure 1.6: Minimized objective function.
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Figure 1.7: Contours of the minimized objective function.

identified set. For these, no joint probability πijkl of observables and unobservables

exists that is compatible with the data-generating process pijk and with νl.

Objective Function

In Figures 1.6 and 1.7, the minimized objective function and its contours are shown.

The zeros of this function correspond to the identified set. However, the values

outside the identified set also have an interesting interpretation in that they represent

the smallest probability of an event incompatible with the economic model. If, for
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instance, for a certain parameter value the minimized value of the objective function

is 0.2, this means that for any data-generating process, at least 20% of the pairs of

observed and unobserved variables violate the support restrictions.17 This may serve

as an appealing measure of misspecification with respect to the support restrictions.

Example 2: Triangular System of Equations with Binary Dependent

Variables

Following Shaikh and Vytlacil (2011), the object of interest is the Average Treatment

Effect (ATE) in the triangular system of equations.

The collection of assumptions is as follows:

• Y = 1(αD + βX− ε1 ≥ 0), (1.13)

• D = 1(δZ− ε2 ≥ 0), (1.14)

• (X, Z) ⊥⊥ (ε1, ε2),

where Y is a binary outcome variable, D is a treatment identifier, X is an exogenous

covariate, and Z is an instrument. Note that no parametric distributional assumptions

on (ε1, ε2) are made.

Formulation in the Extended GH Framework

We have four observed variables (Y, X, D, Z) with probabilities pijkl, and two unob-

served variables (ε1, ε2). The discretization of unobserved (ε1, ε2) into (u1, u2) is ac-

cording to Lemma 2. Let us denote πijklmn = Pr(Y = yi, X = xj, D = dk, Z = zl, ε1 =

u1
m, ε2 = u2

n). The penalty on the points of support not compatible with the economic

restrictions G is given by:

cijklmn =





0, (yi, xj, dk, zl, u1
m, u2

n) : yi = 1(αdk − u1
m ≥ 0) and dk = 1(δzl − u2

n ≥ 0),

1, otherwise.

A particular value of ATE = θ is compatible with the list of assumptions and with

data (pijkl) if and only if zero is the optimal solution of the following optimization

17From Lemma 2, we can see that this interpretation is unaffected by the discretization of the unob-
served variables.
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Figure 1.8: The bounds on the ATE are compared using the Shaikh and Vytlacil (2011)
approach (left-hand side) and the extended GH framework (right-hand side), with X
fixed (X = 0) and α fixed (α = 0.25, upper pane) or δ fixed (δ = 0.25, lower pane).

problem:

min(π) ∑i,j,k,l,m,n πijklmncijklmn

s.t.

∑m,n πijklmn = pijkl, ∀i, j, k, l

∑i,k πijklmn = ∑i,k pijkl ∑i,j,k,l πijklmn, ∀k, l, m, n

∑m
[
1(α ≥ u1

m)− 1(0 ≥ u1
m)
]

∑i,j,k,l,n πijklmn = θ,

πijklmn ≥ 0, ∀i, j, k, l, m, n.
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Figure 1.9: Bounds on ATE are compared using the Shaikh and Vytlacil (2011) ap-
proach (left) and extended GH framework (right-hand side), with variation in X
(supp(X) = {−2,−1, 0, 1, 2}) and α = β = 0.25 fixed.

Results

Figures 1.8 and 1.9 compare the results of Shaikh and Vytlacil (2011) with the extended

GH framework.

Example 3: Bounds on Treatment Effects with Imperfect Compliance

The following subsection shows how the extended GH framework can determine

sharp bounds on the average causal effect when imperfect compliance is present.

This was done in the celebrated works of Balke and Pearl (1997, 1994), and this section

replicates their results.

Consider three types of observed variables: Y ∈ {y0, y1} is an outcome variable

where y0 is for a positive observed response, D ∈ {d0, d1} is whether treatment was

received (d1) or not (d0), and Z ∈ {z0, z1} is whether treatment was offered (z1) or not

(z0). We also assume the existence of an unobserved U that captures individual char-

acteristics affecting the receipt of treatment and the outcome variable. The quantity

of interest is the average causal effect of D on Y, denoted as:

ACE(D → Y) = Pr(Y = y1|D = d1)− Pr(Y = y1|D = d0). (1.15)

Restrictions that are imposed:

31



• Z ⊥⊥ Y|{D, U}, treatment assignment only affects the outcome variable through

actual treatment D.

• Z ⊥⊥ U, Z and U are independent, randomization of the treatment assignments

Z may deliver this property.

• no interactions between individuals or Stable Unit Treatment Value Assumption

(known as the SUTVA Assumption (Rubin, 1974)).

Formulation in the Extended GH Framework

Following the notation of Balke and Pearl (1994), the unobserved type U of an in-

dividual is decomposed into two response function variables RD ∈ {0, 1, 2, 3} and

RY ∈ {0, 1, 2, 3}. Pair (RY, RD) is now the unobserved type (U) of the individual.

Treatment D is a deterministic function of Z and RD:

D = fD(Z, RD)

, where

fD(z, 0) = d0 , fD(z, 1) =





d0, if z = z0,

d1, if z = z1,

fD(z, 2) = d1 , fD(z, 3) =





d1, if z = z0,

d0, if z = z1.

Similarly, the outcome Y is a deterministic function of D and RY:

D = fY(D, rY)

, where

fY(d, 0) = y0 , fY(d, 1) =





y0, if d = d0,

y1, if d = d1,

fY(d, 2) = y1 , fY(d, 3) =





y1, if d = d0,

y0, if d = d1.
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This is basically a discretization of the unobserved component U into the discrete

(RY, RD).

The quantity of interest is the Average Causal Effect θ = ACE(D → Y) = Pr(RY =

1)− Pr(RY = 3). We would like to find sharp bounds on θ given Pr(Y, D, Z).18. We

denote the probability of observed variables pijk = Pr(Y = yi, D = dj, Z = zj). There

are 5 variables in the model: observed Y, D, Z and unobserved RY, RD. The mapping

G between unobserved variables and observed variables is defined as

G(RY, RD) = {(Y, D, Z) : fD(Z, RD) = D, fY(D, RY) = Y}.

Now, we denote the joint probability distribution of observed and unobserved vari-

ables as πijklm = Pr(Y = yi, D = dj, Z = zk, RY = l, RD = m).

The penalty on the points of support not compatible with G is given by:

cijklm =





0, (yi, dj, zk) ∈ G(l, m),

1, otherwise.

Finally, parameter θ is included in the identified set if and only if the optimized

value of the following problem is equal to zero:

min(π) ∑ijklm πijklmcijklm

s.t.

∑lm πijklm = pijk, ∀i, j, k

πijklm ∑ik πijklm = ∑i πijklm ∑k πijklm, ∀i, j, k, l, m

∑ij πijklm = ∑ij pijk ∑ijk πijklm, ∀i, j, k,

∑ijkm πijk1m −∑ijkm πijk3m = θ,

πijklm ≥ 0, ∀i, j.

The first restriction states that the πijklm has to be compatible with pijk, which

is observed from the data. The second equality states that when fixing D, RY, RD

18 ACE(D → Y) = Pr(Y = y1|D = d1)− Pr(Y = y1|D = d0) = Pr(RY = 1)+ Pr(RY = 2)− (Pr(RY =
2) + Pr(RY = 3)) = Pr(RY = 1)− Pr(RY = 3)
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(equivalent to fixing D, U), Z is independent of Y.19 The third equation ensures that Z

is marginally independent of (RY, RD), whereas the fourth restricts the space of joint

distributions to those that have ACE(D → Y) equal to θ.

Note that the second restriction is quadratic, so the whole problem is not a linear

program. Quadratic restrictions may give rise to the use of semidefinite programming

routines.

Although the nonlinear constraint causes significant computational difficulties, re-

sults in Balke and Pearl (1997) can be replicated to a reasonable degree of precision

(10−4).

Example 4: Binary Choice Model with Zero-median Restriction

This subsection aims to capture the identification setup of the binary choice model

with discrete explanatory variables within the extended GH framework. Identification

for this type of problem has been studied extensively in recent work by Komarova

(2013). It is well known that if all explanatory variables in a binary choice model are

discrete, the parameters of the model are in general set rather than point identified.

An identification strategy was outlined earlier (Manski and Thompson, 1986), and

in Komarova (2013) a computationally attractive recursive procedure is outlined that

determines sharp bounds on the identified set.

The problem that is studied takes the following form:

• Y = 1(Xβ + U ≥ 0) (1.16)

• Pr(U ≤ 0|X = x) = 0.5 ∀x ∈ X (1.17) ,

where Y is the outcome variable, X is a k-dimensional random variable with discrete

support X , β is a k-dimensional parameter of interest, and U is an unobservable scalar

vector variable. The only distributional assumption about U that is made is that the

median of U is zero conditional on X.

Discretization of Unobservables

The observed variables X are exogenous in this setup, so the analysis is done condi-

tional on a particular x. The identified set for β will therefore be an intersection of
19Instrument Z only affects Y via D: Pr(Y|D, Z, RY, RD) = Pr(Y|D, RY, RD), and this equation can

be reformulated as Pr(Y, D, Z, rY, rD)Pr(D, RY, RD) = Pr(Y, D, rY, rD)Pr(D, Z, RY, RD).
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Figure 1.10: The figure on the left-hand side depicts the support restrictions and the
figure on the right-hand side is a result of naive discretization.

bounds created by conditioning on all values of X that have nonzero probability.20

The only restriction put on the unobservable variable U is the zero-median restric-

tion, which has to be taken into account when finding a suitable discretization of U.

Naive discretization is presented in Figure 1.10 and does not allow the unobservables

to meet the conditional zero-median condition. When the discretization is done by

virtue of Lemma 2 so that further distributional restrictions are taken into account as

shown in Figure 1.11, the discretization is sufficiently rich to allow us to formulate the

conditional zero-median condition. Note that Lemma 2 proves that this discretization

leaves the identified set unaffected.

Formulation in the Extended GH Framework

Let X = x be fixed and pi = Pr(Y = yi|X = x), where y1 = 0 and y2 = 1. A penalty

cij:

cij =





0, if yi = 1(xβ + uj ≥ 0),

1, otherwise,

carries the information on support restrictions.

The problem can now be formulated as:

20As with exogenous instruments, the marginal distribution of X does not have any identifying
power.
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Figure 1.11: The two panes on the left (right)-hand side represent suitable discretiza-
tion when Xβ < 0 (Xβ ≥ 0). The discretization was obtained using Lemma 1.

min(π) ∑i,j πijcij

s.t.

∑j πij = pi, ∀i

∑i πi1 = ∑i πi2 + ∑i πi3,

πij ≥ 0, ∀i, j,

whenever Xβ < 0 and:

min(π) ∑i,j πijcij

s.t.

∑j πij = pi, ∀i

∑i πi1 + ∑i πi2 = ∑i πi3,

πij ≥ 0, ∀i, j
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when Xβ ≥ 0. The first set of equalities states that the joint distribution π is

compatible with observed data pi, while the second equality restricts U to have zero

median.21 As in previous examples, parameter β is included in the identified set if

the optimized value of the problem is equal to 0.

To simplify the notation, all probabilities are implicitly conditioned on X = x. If

Xβ < 0, one can immediately see that Pr(U = u3) = Pr(Y = 1) = p2 and Pr(U =

u1) + Pr(U = u2) = Pr(Y = 0) = p1. Therefore, Pr(U = u1) = Pr(U = u2) + Pr(U =

u3) = 0.5 implies that a proper distribution on U exists if and only if Pr(U = u3) =

Pr(Y = 1) < 0.5. On the other hand, if Xβ ≥ 0, then Pr(U = u2) + Pr(U = u3) =

Pr(Y = 1) = p2 and Pr(U = u1) = Pr(Y = 0) = p1 together with Pr(U = u1) +

Pr(U = u2) = Pr(U = u3) = 0.5 imply that Pr(U = u3) = Pr(Y = 1) < 0.5, so we

obtain precisely the same result as (1.25).

This example is simple, but shows how we can easily approach identification in a

systematic manner.

1.4 Imperfect Instruments in a Single-equation Endoge-

nous Binary Response Model

As opposed to the previous section, this section demonstrates how the extended GH

framework can work in a problem not studied before. As shown in the example with

imperfect instruments, we seek to find how the flexibility of adding extra distribu-

tional constraints can help us access this problem. The extension plays a crucial role

in that we cannot apply the original GH framework.

Identification based on instrumental variables has become the workhorse of ap-

plied research, given that we are unable to test the exogeneity of instruments in the

just-identified case. It is then of great interest to know the identifying power of this

assumption. This information can serve as a sensitivity analysis, such that when re-

laxing this assumption we can see how the identified set expands. If the identified

set becomes substantially larger when exogeneity is only slightly relaxed, we should

focus more attention on discussion of this assumption. One may then need to defend

21If Xβ < 0 equation (1.17) is equivalent to Pr(U = u1|X = x) = Pr(U = u2|X = x) + Pr(U =
u3|X = x), and if Xβ ≥ 0 equation (1.17) can be rewritten as Pr(U = u1|X = x) + Pr(U = u2|X = x) =
Pr(U = u3|X = x). Note that this restriction can be rewritten as ∑i,j πij(1(U ≤ 0)− 0.5) = 0.
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the assumption of exogeneity very well for the results to be credible. Conversely, if the

exogeneity of instruments is shown not to have great identifying power, the analysis

could be said to be robust to some departures from the exogeneity.

Different approaches have been employed in the literature to address the issue of

imperfect instruments. For example, Conley, Hansen, and Rossi (2012) parameter-

ize the amount of instrument endogeneity and derive the identified set in the linear

regression model. Elsewhere, Hahn and Hausman (2005), rather than deriving the

identified set, compare the properties of the ordinary and two-stage least squares

estimators, while Manski and Pepper (2000) make use of the monotonicity of the in-

strumental variables instead of an exogeneity assumption. Lastly, Nevo and Rosen

(2012) derive sharp bounds on the parameters under the assumption that the correla-

tion between the instrument and the error term has the same sign as the correlation

between the endogenous regressor and the error term, and that the instrument is

assumed to be less correlated with the error term than the endogenous regressor.

The example of the single-equation endogenous binary response model from Sec-

tion 1.3 demonstrates how we can use the extended GH setup to trace the identified

set if the strict exogeneity condition is relaxed. The way this assumption is relaxed

is as follows: under the strict exogeneity restriction, Pr(Z) · Pr(U) = Pr(Z ∩U) for

all pairs (Z, U). The distribution Pr(Z) · Pr(U) can be represented as a point in the

nZ× nU-dimensional unit simplex. Instead of restricting Pr(Z∩U) to be exactly equal

to Pr(Z) · Pr(U), we will assume that the difference Pr(Z ∩U)− Pr(Z) · Pr(U) has

to be less or equal to αPr(Z) · Pr(U) in absolute value for some fixed α > 0 and all

(Z, U). The parameter α hence controls the amount of endogeneity in the instruments.

We can model the departure from exogeneity in many ways. However, we select this

somewhat ad hoc way of relaxing strict exogeneity so that the problem still lies within

the linear programming framework and so that discretization is possible.

The model under the study is (1.10) with support restrictions (1.11). In addition,

we assume the instruments are not strictly exogenous. We formulate the problem

within the extended GH framework in the following way:
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min(π) ∑i,j,k,l πijklcijkl (1.18)

s.t.

∑l πijkl = pijk, ∀i, j, k

∑i,j,k πijkl = νl, ∀l

∑i,j πijkl −∑i,j pijkνl ≤ α ∑i,j pijkνl, ∀k, l

−∑i,j πijkl + ∑i,j pijkνl ≤ α ∑i,j pijkνl, ∀k, l

πijkl ≥ 0, ∀i, j, k, l.

As in (1.3), we generate the probabilities of the observed variables according to (1.21),

with Z having support on {−0.75, 0, 0.75} with probabilities
(

1
3 , 1

3 , 1
3

)
.

Results

The results of this illustration are presented in Figures 1.12 and 1.13. We can see how

the identified set becomes larger as the departure from strict exogeneity increases.

As the identified set with the weak instrument is larger than the identified set with

the stronger instrument, it is less sensitive to the violation of the strict exogeneity

assumption because it is much closer to the identified set with the instrument that is

completely endogenous.

1.5 Conclusion

In this paper, we proposed a new method to obtain the identified set as a simple ex-

tension of the GH identification strategy so that a broader class of problems can be

solved. A considerable advantage of this new method is its algorithmic structure, such

that we need not derive the sharp bounds of the identified set from case to case, but

rather efficient algorithms can be employed to trace the identified set independently

of the structure of the problem. Some existing identification results were replicated in

a straightforward manner. Moreover, the new method allowed us to consider the im-
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Figure 1.12: Identified sets corresponding to different values of the parameter α; the
case with a strong instrument. The darker-shaded areas indicate stronger exogeneity.
Note that the observed probabilities together with the assumption of uniform U and
support restrictions given by the economic model do have some identifying power,
even if the instrument is completely endogenous.
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Figure 1.13: Identified sets corresponding to different values of the parameter α; the
case with a weak instrument. The darker-shaded areas indicate stronger exogeneity.
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pact of relaxing the assumption of strict exogeneity in nonlinear models with discrete

variables.

The main finding is that if the observed variables are discrete, identification can be

attacked at its lowest level by searching in the space of the joint distribution functions

for the observed and unobserved variables. This delivers greater flexibility when

studying the identifying power of different sets of assumptions. How to make this

method operational in a continuous case, e.g. as an analog of condition (1.4), and how

to undertake statistical inference remain open questions. The iterative subsampling

scheme in Romano and Shaikh (2010) and the intersection bounds in Chernozhukov

et al. (2013) appear to be useful steps forward. Further research is warranted.
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APPENDIX

1.6 Proofs

1.6.1 Proof of Lemma 1

Proof. We need to show that there exists π1 : Y ×U 7→ [0, 1] satisfying:

n

∑
i=1

∫

u∈U
π1(yi, u)1(yi ∈ G(u))du = 1, (C1)

∀i = 1, ..., n :
∫

u∈U
π1(yi, u)du = pi, (C2)

∀u ∈ U :
n

∑
i=1

π1(yi, u) = ν(u), (C3)

∀I ∈ I; ∀u ∈ U :

∣∣∣∣∣∑i∈I
π1(yi, u)−∑

i∈I
piν(u)

∣∣∣∣∣ ≤ α ∑
i∈I

piν(u). (C4)

∀i = 1, ..., n; ∀u ∈ U : π1(yi, u) ≥ 0 (C5)

if and only if there exists π2 : Y ×U∗ 7→ [0, 1] satisfying:
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n

∑
i=1

m

∑
j=1

π2(yi, u∗j )1(yi ∈ G(u∗j ))du = 1, (D1)

∀i = 1, ..., n :
m

∑
j=1

π2(yi, u∗j ) = pi, (D2)

∀j = 1, ..., m :
n

∑
i=1

π2(yi, u∗j ) = ν∗(u∗j ), (D3)

∀I ∈ I; ∀j = 1, ..., m :

∣∣∣∣∣∑i∈I
π2(yi, u∗j )−∑

i∈I
piν
∗(u∗j )

∣∣∣∣∣ ≤ α ∑
i∈I

piν
∗(u∗j ). (D4)

∀i = 1, ..., n; ∀j = 1, ..., m : π2(yi, u∗j ) ≥ 0 (D5)

"(⇒)" - Given π1, we construct π2 according to:

∀i = 1, ..., n; ∀j = 1, ..., m : π2(yi, u∗j ) =
∫

∆j

π1(yi, u)du, (Π2)

and this will ensure that {(C1),(C2),(C3M),(C4M),(C5)} implies {(D1),(D2),(D3M),(D4M),(D5)}

as shown below:

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )1(yi ∈ G(u∗j ))
(Π2)
=

n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)du1(yi ∈ G(u∗j ))
(PartU1)
=

(PartU1)
=

n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)1(yi ∈ G(u))du =
n

∑
i=1

∫

u∈U

π1(yi, u)1(yi ∈ G(u))du
(C1)
= 1,

∀i :
m

∑
j=1

π2(yi, u∗j )
(Π2)
=

m

∑
j=1

∫

∆j

π1(yi, u)du =
∫

u∈U

π1(yi, u)du
(C2)
= pi,

∀j :
n

∑
i=1

π2(yi, u∗j )
(Π2)
=

n

∑
i=1

∫

∆j

π1(yi, u)du =
∫

∆j

n

∑
i=1

π1(yi, u)du
(C3)
=
∫

∆j

ν(u)du
(P)
= ν∗(u∗j ),

∀j, ∀I :

∣∣∣∣∣∑i∈I
π2(yi, u∗j )−∑

i∈I
piν
∗(u∗j )

∣∣∣∣∣
(Π2),(P)
=

∣∣∣∣∣∣∣
∑
i∈I

∫

∆j

π1(yi, u)du−∑
i∈I

pi

∫

∆j

ν(u)du

∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣

∫

∆j

(
∑
i∈I

π1(yi, u)−∑
i∈I

piν(u)

)
du

∣∣∣∣∣∣∣

(C4)
≤

∣∣∣∣∣∣∣

∫

∆j

α ∑
i∈I

piν(u)du

∣∣∣∣∣∣∣
= α ∑

i∈I
piν
∗(u∗j ).
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∀i, ∀j : π2(yi, u∗j )
(Π2)
=

∫

∆j

π1(yi, u)du
(C5)
≥
∫

∆j

0du = 0.

"(⇐)" - If we know π2, we obtain π1 using:

∀i = 1, ..., n; ∀j = 1, ..., m; ∀u ∈ ∆j : π1(yi, u) = π2(yi, u∗j )
ν(u)

ν∗(u∗j )
, (Π1)

(note that (Π1) implies (Π2)) and we now show that {(D1),(D2),(D3M),(D4M),(D5)}

implies {(C1),(C2),(C3M),(C4M),(C5)}:

n

∑
i=1

∫

u∈U

π1(yi, u)1(yi ∈ G(u))du =
n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)1(yi ∈ G(u))du
(PartU1)
=

(PartU1)
=

n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)du1(yi ∈ G(u∗j ))
(Π1)
=

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )1(yi ∈ G(u∗j ))
(D1)
= 1,

∀i :
∫

u∈U

π1(yi, u)du =
m

∑
j=1

∫

∆j

π1(yi, u)du
(Π1)
=

m

∑
j=1

π2(yi, u∗j )
(D2)
= pi,

∀j, ∀u ∈ ∆j :
n

∑
i=1

π1(yi, u)
(Π1)
=

n

∑
i=1

π2(yi, u∗j )
ν(u)

ν∗(u∗j )
(D3)
= ν(u),

∀j, ∀I, ∀u ∈ ∆j :

∣∣∣∣∣∑i∈I
π1(yi, u)−∑

i∈I
piν(u)

∣∣∣∣∣
(Π1)
=

∣∣∣∣∣∑i∈I
π2(yi, u∗j )

ν(u)
ν∗(u∗j )

−∑
i∈I

pi
ν(u)

ν∗(u∗j )
ν∗(u∗j )

∣∣∣∣∣ =

=

∣∣∣∣∣
ν(u)

ν∗(u∗j )

(
∑
i∈I

π2(yi, u∗j )−∑
i∈I

piν
∗
j

)∣∣∣∣∣
(D4)
≤
∣∣∣∣∣α ∑

i∈I
piν(u)

∣∣∣∣∣ = α ∑
i∈I

piν(u),

∀i, ∀j, ∀u ∈ ∆j : π1(yi, uj)
(Π1)
= π2(yi, u∗j )

ν(u)
ν∗(u∗j )

(D5)
≥ 0.

1.6.2 Proof of Lemma 2

Proof. Similarly to the proof of Lemma 1, we need to show that there exists π1 :

Y ×U 7→ [0, 1] satisfying (C1),(C2),(C5) and:

45



n

∑
i=1

∫

u∈U

π1(yi, u)φ(u)du = 0, (C3M)

∀I ∈ I; ∀u ∈ U :

∣∣∣∣∣∑i∈I
π1(yi, u)−∑

i∈I
pi

n

∑
i=1

π1(yi, u)

∣∣∣∣∣ ≤ α ∑
i∈I

pi

n

∑
i=1

π1(yi, u) (C4M)

if and only if there exists π2 : Y ×U∗ 7→ [0, 1] satisfying (D1),(D2),(D5) and:

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )φ(u
∗
j )du = 0, (D3M)

∀I ∈ I; ∀j = 1, ..., m :

∣∣∣∣∣∑i∈I
π2(yi, u∗j )−∑

i∈I
pi

n

∑
i=1

π2(yi, u∗j )

∣∣∣∣∣ ≤

≤ α ∑
i∈I

pi

n

∑
i=1

π2(yi, u∗j ). (D4M)

"(⇒)" - Given π1, we construct π2 according to:

∀i = 1, ..., n; ∀j = 1, ..., m : π2(yi, u∗j ) =
∫

∆j

π1(yi, u)du, (Π2)

and this will ensure that {(C1),(C2),(C3M),(C4M),(C5)} imply {(D1),(D2),(D3M),

(D4M),(D5)}. Because the partitioning of the U space using (PartU2) is finer than

that using (PartU1), we find that {(C1),(C2),(C5)}, implying {(D1),(D2),(D5)} immedi-

ately using the proof of Lemma 1. It is therefore sufficient to show that {(C3M),(C4M)}

imply {(D3M),(D4M)}:

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )φ(u
∗
j )

(Π2)
=

n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)du φ(u∗j ) =

=
n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)φ(u∗)du
(PartU2)
=

n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)φ(u)du =

=
n

∑
i=1

∫

u∈U

π1(yi, u)φ(u)du
(C3M)
= 0,
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∀I ∈ I; ∀j = 1, ..., m :

∣∣∣∣∣∑i∈I
π2(yi, u∗j )−∑

i∈I
pi

n

∑
i=1

π2(yi, u∗j )

∣∣∣∣∣
(Π2)
=

(Π2)
=

∣∣∣∣∣∣∣
∑
i∈I

∫

∆j

π1(yi, u)du−∑
i∈I

pi

n

∑
i=1

∫

∆j

π1(yi, u)du

∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣

∫

∆j

(
∑
i∈I

π1(yi, u)−∑
i∈I

pi

n

∑
i=1

π1(yi, u)

)
du

∣∣∣∣∣∣∣

(C4M),(Π2)
≤

(C4M),(Π2)
≤

∣∣∣∣∣α ∑
i∈I

pi

n

∑
i=1

π2(yi, u∗j )

∣∣∣∣∣ = α ∑
i∈I

pi

n

∑
i=1

π2(yi, u∗j ).

"(⇐)" - Knowing π2, we obtain π1 using:

∀i = 1, ..., n; ∀j = 1, ..., m; ∀u ∈ ∆j : π1(yi, u) = π2(yi, u∗j )
γ(u)∫

u∈∆j

γ(u)du
, (Π1)

where γ is an arbitrary strictly positive probability density function. It is now

sufficient to show that {(D3M),(D4M) (D5)} imply {(C3M),(C4M),(C5)}, because the

proof of Lemma 1 reveals that {(C1),(C2)} imply {(D1),(D2)} and (PartU2) provides a

finer discretization of U than does (PartU1):

n

∑
i=1

∫

u∈U

π1(yi, u)φ(u)du =
n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)φ(u)du
(PartU2)
=

(PartU2)
=

n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)φ(u∗j )du =
n

∑
i=1

m

∑
j=1

∫

∆j

π1(yi, u)du φ(u∗j )
(Π1)
=

(Π1)
=

n

∑
i=1

m

∑
j=1

π2(yi, u∗j )φ(u
∗
j )

(D3M)
= 0,
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∀j, ∀I, ∀u ∈ ∆j :

∣∣∣∣∣∑i∈I
π1(yi, u)−∑

i∈I
pi

n

∑
i=1

π1(yi, u)

∣∣∣∣∣
(Π1)
=

(Π1)
=

∣∣∣∣∣∣∣∣
∑
i∈I

π2(yi, u∗j )
γ(u)∫

u∈∆j

γ(u)du
−∑

i∈I
pi

n

∑
i=1

π2(yi, u∗j )
γ(u)∫

u∈∆j

γ(u)du

∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣

γ(u)∫
u∈∆j

γ(u)du

(
∑
i∈I

π2(yi, u∗j )−∑
i∈I

pi

n

∑
i=1

π2(yi, u∗j )

)
∣∣∣∣∣∣∣∣

(D4),(Π1)
≤

(D4),(Π1)
≤

∣∣∣∣∣α ∑
i∈I

pi

n

∑
i=1

π1(yi, u)

∣∣∣∣∣ = α ∑
i∈I

pi

n

∑
i=1

π1(yi, u),

∀i, ∀j, ∀u ∈ ∆j : π1(yi, u)
(Π1)
= π2(yi, u∗j )

γ(u)∫
u∈∆j

γ(u)du

(D5)
≥ 0.

1.7 Technical Details on the Presented Examples

1.7.1 Example 1

Chesher’s Approach

In order to present the identification result from Chesher (2009), we first introduce the

basic definitions. The notation used differs from that in GH that is employed in the

present study.

• A model M is defined as (1.10) with U ∼ Uni f (0, 1) and U ⊥⊥ Z for all Z ∈ Z.

• A structure S ≡ {t, FUX|Z} is a pair of a threshold-crossing function t and a

cumulative distribution function of the conditional distribution of U and X given

Z.

• A structure S is said to be admitted by a model M if FUX|Z respects the inde-

pendence property, that is FU(u|z) ≡ FUX|Z(u, x̄|z) = u for all u ∈ (0, 1) and all

z ∈ Z, where x̄ is the upper bound of X.
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• A structure S generates the joint distribution of Y and X given Z if FYX|Z(0, x|z) =
FUX|Z(t(x), x|z).

• Two structures S∗ ≡ {t∗, F∗UX|Z} and S0 ≡ {t0, F0
UX|Z} are said to be observa-

tionally equivalent if they generate the same distribution of Y and X given

Z for all z ∈ Z, that is if F∗YX|Z(0, x|z) ≡ F∗UX|Z(t
∗(x), x|z) = F0

YX|Z(0, x|z) ≡
F0

UX|Z(t
0(x), x|z) for all z ∈ Z and for all x ∈ X .

Theorem 1 from Chesher (2009) states that having a structure S0 admitted by the

model M that generates the conditional distribution of Y and X given Z with cumula-

tive distribution function F0
YX|Z and if this threshold-crossing function t is in structure

S admitted by model M that is observationally equivalent to S0, then t satisfies:

c0l(u, z; p) = Pr0[Y = 0∩ t(X) < u|Z = z] < u, ∀u ∈ (0, 1), ∀z ∈ Z (1.19)

c0u(u, z; p) = 1− Pr0[Y = 1∩ u ≤ t(X)|Z = z] ≥ u, ∀u ∈ (0, 1), ∀z ∈ Z, (1.20)

where Pr0 states that probabilities were calculated using the measure that was gen-

erated by S0, that is using F0
YX|Z and l and u stand for the lower and upper bound,

respectively.

Given the continuity of X, the converse is also true. This is equivalent to saying

that the set of all functions p satisfying the above set of inequalities is a sharply defined

identified set. In Chesher (2010), this theorem is proven, even for a more general setup.

It is important to note that the proof is constructive, so that for a given threshold-

crossing function t, a suitable distribution function FUX|Z is constructed such that

{t, FUX|Z} is admitted by the model M and generates the FYX|Z observed in the data.

This highlights the link to the GH setup, as the aim there is to find the joint probability

distribution that satisfies the independence restriction, has correct marginals, and

places all the probability on those combinations of variables that are compatible with

the data.

Illustration: Discrete Endogenous Variable

Construction of True Data-generating Process

The following example is taken from Chesher (2010). Suppose that both Y and X are

binary; Y ≡ 1(Y∗ ≥ 0) and X ≡ 1(X∗ ≥ 0), where Y∗ and X∗ were generated in the
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following way:

Y∗ = θ0 + θ1X + W, X∗ = b0 + b1Z + V
 W

V


 ⊥⊥ Z,


 W

V


 ∼ N




 0

0


 ,


 1 r

r 1




 (1.21)

with parameters:

(θ0, θ1, b0, b1, r) = (0, 0.5, 0, 1,−0.25). (1.22)

and the instrument Z takes values in Z = {−0.75, 1, 0.75}.
However, the econometrician does not know how the data were generated. She

only assumes (1.10) and U ⊥⊥ Z, U ∼ Uni f (0, 1), t(X) = Φ(−θ0 − θ1X), and observes

the distribution of the observable variables pijk.22 Even though it is impossible to

recover the true value of θ = (0, 0.5) exactly, it is possible to at least create informative

bounds for it.

As the X threshold-crossing function t attains only two values, t(0) = Φ(−θ0) =

0.5 and t(1) = Φ(−θ0 − θ1) = 0.308.

Illustration: Continuous Endogenous Variable

Construction of the True Data-generating Process

Suppose that the economic model is described by (1.10) and the data-generating pro-

cess by (1.21) with the parameters:

(θ0, θ1, b0, b1, swv, svv) = (0,−1, 0, 0.3, 0.5, 1). (1.23)

as before, the only difference being that X is no longer binary (X = X∗).

The distribution of the observable variables (Y∗, X|Z = z) (Y∗ and X given Z = z)

is given by N(µ(z), Σ), where:

µ(z) =


 θ0 + θ1b0 + θ1b1z

b0 + b1z


 Σ =


 1 + 2θ1swv + θ2

1svv swv + θ1svv

s + wv + θ1svv svv.




22The observed probabilities pijk were obtained using the Matlab function mvtnorm.
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We provide details of the simulations here. Because of the continuity of X, the

unobservable U was discretized as the equidistant point masses on [0, 1]. The distri-

bution of observables is given by:

pijk = Pr(Y = yi ∩ X = xj ∩ Z = zk) = Pr(Y = yi ∩ X = xj|Z = zk)Pr(Z = zk).

It is known that (Y∗, X|Z) ∼ N(µ(z), Σ) and a suitable discretization of X is needed.

It is easy to show that the density of (Y∗|X = x, Z = z) is:

N


µ(z)1 +

Σ21

Σ22
(x− µ(z)2),


1−

√
Σ2

21
Σ11Σ22


Σ11


 .

Integrating the corresponding probability density function at (−∞,0) gives us Pr(Y =

0|X = x, Z = z). The distribution of X given Z = z is N(b0 + b1z, svv), but now the

question is how to discretize the support of X, which is R. If the number of nodes is

nx, then one suggestion would be to set the z to its mean value, that is 0, and set the

values of the discretized support of X to nx equidistant quantiles.23 Even though this

discretization appears natural, it brings some degree of arbitrariness to the problem.

Finally, taking all the pieces together yields:

pijk = Pr(Y = yi|X = xj, Z = zk)Pr(X = xj|Z = zk)Pr(Z = zk),

where all quantities on the right-hand side are known.

1.7.2 Example 2

Illustration

True Data-generating Process

For the illustration, (ε1, ε2) are assumed to be N(0, I2). This assumption, together with

(1.13) and (1.14), generates the distribution of Y and D given X and Z. The support

of Z is assumed to be {−1, 1} and the support of X is either {0} or {−2,−1, 0, 1, 2}.
(X, Z) are assumed to be uniformly distributed.24

23Excluding the 0% and 100% quantiles.
24As in Example 1, the distribution of exogenous variables per se does not have any identifying

power. It is included purely for the simplicity of the exposition.
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1.7.3 Example 3

Balke and Pearl’s Approach

Balke and Pearl (1997) made use of the fact that these restrictions impose the following

decomposition on the joint distribution of (Y, D, Z, U):

Pr(Y, D, Z, U) = Pr(Y|D, U)Pr(D|Z, U)Pr(Z)Pr(U). (1.24)

There exist four different functions from Z to D and four different functions from

D to Y, hence 16 different types of individuals that we can consider. Hence, one

can think of U as having a discrete support with 16 points, each point representing

a pair of functions, one from Z to D and the second from D to Y. For instance,

one type u may be persons who always accept treatment and who do not display

a positive outcome irrespective of treatment. The bounds on (1.15) are found using

linear program searching through the space of distributions of the types (U) subject to

the joint distribution to be compatible with observed data Pr(y, d|z). The full setup,

together with discussion, is in Balke and Pearl (1997, 1994).

1.7.4 Example 4

Komarova’s Approach

Following Manski and Thompson (1986):

Pr(Y = 1|X = x) = 1− Pr(U < −xβ|X = x),

together with the zero-median restriction (1.17), implies:

Pr(Y = 1|X = x) ≥ 0.5 ⇔ xβ ≥ 0. (1.25)

Therefore, the bounds on the parameter vector β are obtained as an intersection

of linear half spaces. In Komarova (2013), a recursive procedure is proposed that

translates this set of linear inequalities into bounds on the parameters.
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1.8 Implementation Issues

1.8.1 Extended GH Framework

The following routines were used and compared in order to solve the linear program

(1.12).

• linprog25 – Matlab built-in function from the Optimization Toolbox. We found

the interior point method superior to the simplex method because of the com-

putational time involved. As the objective value is not minimized to exact zeros,

a certain threshold had to be employed. The natural choice was the tolerance

level of the optimization routine (10−8 for nx = nu = 40). The results for the two

approaches were identical.

• GNU Linear Programming Kit (GLPK) – Modified simplex method from Matlab

MEX interface for the GLPK library26. We found this to be significantly faster

than linprog, but with similar results.

The linear program is a long-standing and well-understood problem; however, if the

discretization of X and U is large, then the matrix that encodes the restrictions for

the joint distribution27 can reach the limits of the largest array that can be created by

Matlab. For instance, if the sizes of the supports are nx = nu = 40 together with

ny = 2 and nz = 10, then the joint probability πijkl has 32000 elements. The matrix

that carries the information about restrictions on πijkl will then have 32000 columns.

25http://www.mathworks.com/help/toolbox/optim/ug/linprog.html
26http://glpkmex.sourceforge.net/
27this is a four-dimensional array πijkl stacked into a vector
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Chapter 2

INFERENCE IN PARTIALLY

IDENTIFIED MODELS WITH

DISCRETE VARIABLES

Abstract

This paper compares different ways of conducting statistical inference in models with

discrete variables when a scalar parameter of interest is partially identified. A Monte

Carlo simulation study compares the finite sample properties of the confidence sets

obtained by different methods and leads to a list of practical recommendations.

JEL: C01, C12, C15.

Keywords: Bounds, Average treatment effects, Confidence sets, Simulation study,

Bootstrap, Linear programming.
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2.1 Introduction and Motivation

This paper studies the finite sample properties of various methods of statistical in-

ference in models with discrete variables, when the scalar parameter of interest is

partially identified. In many economically interesting situations, the assumptions of

the economic model together with the data do not uniquely determine the parameter

but only restrict it to lie in a set.

Consideration of the data and economic assumptions involve the following two

steps. First is the question of identification. In an ideal case where perfect knowledge

of the distribution of observable variables is assumed, it is important to identify the

object of interest, which is the collection of models compatible with the data and

identifying assumptions and this set is called the identified set. Second, once the

problem of identification is resolved, it is important to study how the data limitations

affect the conclusions.

This paper addresses the second issue; that is, how to conduct statistical inference

in partially identified models with discrete observable variables for a broad class of

economic problems. It is important for practitioners to know the properties of differ-

ent inferential methods. This paper also attempts to provide some practical advice

on how to choose the right method in different situations and discusses its pros and

cons. More specifically, this paper:

• shows that a bias correction is helpful for diminishing small sample bias,

• points at the problem of a possible empty identified set in small samples when

bootstrapping,

• uses a histogram of vertices corresponding to the optimal solutions of the linear

program to detect possible bootstrap failure, and

• presents a method of obtaining a confidence set with guaranteed (yet possibly

conservative) asymptotic coverage probability in situations when the regular

percentile bootstrap fails.

We use simulation analysis to determine the performance of different inferential

schemes in situations likely to be faced by an empirical researcher. Different methods

are compared, highlighting their theoretical and practical advantages and disadvan-

tages. Furthermore, the analysis discusses some computationally more costly meth-
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ods. The practical advice provided in this paper should be considered by empirical

researchers working on bounds analysis in models with discrete variables.

This paper also complements the work of Laffers (2013b), where an identification

framework was introduced that nests a large class of partially identified problems

with discrete observable variables. Developing an inferential scheme was left as an

open problem. This paper attempts to fill this gap for the case of a scalar parameter.

There are different ways of expressing the concept of statistical uncertainty in par-

tially identified models. This paper focuses on confidence sets that have a frequentist

interpretation. It is assumed that there exists a true parameter that is fixed but un-

known to the researcher. Having a random data sample of finite length, the aim is

to draw inference on the true parameter. This is different from the Bayesian way of

thinking, and Bayesian credible sets and frequentist confidence sets do not even coin-

cide asymptotically (Moon and Schorfheide, 2012). This disagreement is explained in

Kitagawa (2012).

Inference in partially identified models is an area of ongoing research, and our

analysis contributes to this growing stream of literature. Among the first papers

dealing with inference in partially identified setting is Imbens and Manski (2004) for

a scalar parameter, which was further extended to account for nuisance parameters by

(Stoye, 2009). The difference between the confidence region that includes the whole

identified set asymptotically with a fixed probability and the one that covers the true

parameter with this probability asymptotically is also discussed, and Imbens and

Manski (2004) argued why the latter is preferred. Henry and Onatski (2012) found

that policy makers concerned with robust decision making may actually prefer the

confidence region that covers the entire identified set with a prescribed probability.

The first study that considered vector-valued parameters is Chernozhukov et al.

(2007), which is based on the subsampling of a criterion function, which is a func-

tion of the data and of the parameter. Zeros of the criterion function define the

identified set, which is the set of parameters that are compatible with the data and

with the assumptions that constitute the economic model. Romano and Shaikh (2010)

builds upon these results and proposes an iterative scheme that increases the statis-

tical power and does not require an initial consistent estimate of the identified set.

Rosen (2008) considers the case in which the identified set is defined by a finite collec-
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tion of moment inequalities and derives the asymptotic distribution of an associated

statistic. Galichon and Henry (2009a) construct the confidence region by inverting

the Kolmogorov–Smirnov statistic for Choquet capacity functionals. Beresteanu and

Molinari (2008), Beresteanu et al. (2011, 2012) make use of the tools of the Random

Sets Theory (Molchanov, 2005). The recent work of Chernozhukov, Lee, and Rosen

(2013) considers inference on the bounds that are defined as the infimum or supre-

mum of a parametric or a nonparametric function and is the only method that can

handle the continuum of the moment inequalities. Bugni (2010) proposes a corrected

bootstrap procedure with favorable finite sample properties for the moment inequal-

ities case. The work of Andrews and Shi (2013) is also concerned with problems

defined by conditional moment inequalities, and it shows how these can be trans-

formed into unconditional ones using instruments. The work of Henry et al. (2011)

uses a combinatorial bootstrap that significantly elevates the computational cost re-

lated to creating the identified set. Performance of different criterion functions that

define the identified set for the moment inequalities case is studied in Canay (2010)

and Bugni (2010, 2011).

This paper is organized as follows. Section 2.2 describes the setup and the notation

used in this paper. Different inferential methods are presented in Section 2.3. Sec-

tion 2.4 presents the simulation results that compare the performance of the different

methods. Section 2.5 presents concluding remarks and some practical recommenda-

tions.

2.2 Setup and Notation

Laffers (2013b) builds upon the results of Galichon and Henry (2009a) and discusses

how an identified set can be determined using a linear programming technique in a

large class of partially identified models. The set of assumptions that define the eco-

nomic model and the probability distribution of the observed variables together often

translate into linear restrictions on the joint probability distribution of the observed

and unobserved variables. The joint distribution need not be uniquely determined by

these restrictions, and the parameter of interest is only partially identified. If the scalar

parameter of interest is a linear function of the joint distribution function, then the
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identified set corresponds to an interval between the minimum and the maximum of

the linear program. The leading example is the identification of the bounds on average

treatment effects under different assumptions. The linear programming identification

formulation is rich, and many problems can be formulated within this framework

(Laffers, 2013b). There are other studies that consider partially identified parameters

using linear programming; most notably, Balke and Pearl (1997, 1994), Manski (2007),

Honoré and Tamer (2006), Chiburis (2010) and Freyberger and Horowitz (2012). There

is also an early literature in stochastic programming that studied a distribution problem,

where the object of interest was the distribution of the optimal solution of a random

linear program (Babbar, 1955; Wagner, 1958; Tintner, 1960; Prekopa, 1966). In order to

derive the asymptotic distribution of the optimal solution and of the optimum, these

papers make strong assumptions that are not always appropriate in our setup. This

paper will look more closely at the method in Freyberger and Horowitz (2012), which

is closest to this stream of literature.

The inference schemes considered in this paper are mainly based on the boot-

strap (Efron, 1979). Horowitz (2001) presents an expository overview of the topic for

econometricians.

Most empirical studies focus on inference for a scalar parameter that is a linear

function of the joint probability distribution where the linear programming formula-

tion is convenient. Instead of running a linear program for every single parameter

value as in Laffers (2013b), only two optimizations are required, one for the minimum

and one for the maximum. Hence our object of interest, the identified set (Lmin, Lmax),

is an interval between the minimum and the maximum of the objective function of a

random linear program in a standard form:

max(min)cTπ

s.t.

Aπ = b,

π ≥ 0,

(2.1)
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where c is a fixed vector, and matrix A and vector b are data dependent and need to be

estimated.1 Strongly consistent estimators of A and b are available and are denoted as

Ân and b̂n based on a sample size n. L̂max estimates the optimized objective function

Lmax by solving the sample analog problem of (2.1):

max(min)cTπ

s.t.

Ânπ = b̂n,

π ≥ 0.

(2.2)

We introduce some further notation.

• Let p0 = (p1
0, p2

0, . . . , pk
0) be the true vector of probabilities of an observable

discrete random variable X, which can take k different values {X1, · · · , Xk}, let

Xn denote a random sample of size n, and p̂n =
(

p̂1
n, p̂2

n, . . . , p̂k
n
)

is a sample

analog of p0 based on Xn ( p̂j
n = ∑n

i=1 1(Xi
n = X j)/n).

• Let ΘI(p) be the identified set if the probability of observables is p; Θ0 ≡ ΘI(p0)

is the true identified set and Θ̂n ≡ ΘI( p̂n) is the estimator of the identified set

Θ0 based on the i.i.d. data sample Xn. Lmin = min ΘI(p), Lmax = max ΘI(p),

L̂min = min Θ̂n and L̂max = max Θ̂n.

The goal is to create a confidence region, Ĉn, with the following properties.

• Asymptotic (1− α)-coverage of the unknown parameter from the identified set:

infθ0∈Θ0 limn→∞ Pr(θ0 ∈ Ĉn) ≥ 1− α.

• Convergence at the fastest possible rate.2

• It works robustly under different scenarios.

• It is easy to implement.

The data enter the analysis only through the vector of probabilities p.

1 Note that the identified set is an interval. This was proven in Laffers (2013a), and the reasoning is
very similar to that presented in Freyberger and Horowitz (2012); convex combinations of the optimal
solutions that correspond to the lower and upper bound trace the whole interval between them and
satisfy the linear constraints in (2.1).

2e.g., dH(Θ0, Ĉn) = Op(n−γ) with γ as large as possible, where dH(A, B) =

max
{

supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)
}

with d(., .) being the Euclidean distance.
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2.2.1 Example

Consider the problem of the bounding average treatment effect of a mother’s school-

ing on her child’s schooling as considered in de Haan (2011) and Laffers (2013d).

These are the variables in the model for an individual j.

• An outcome: yj ∈ Y = {0, 1} - child’s college (0 - no college, 1 - college), yj(0)

and yj(1) are counterfactual outcomes and yj is the observed outcome.

• A treatment: zj ∈ Z = {0, 1} - mother’s college (0 - no college, 1 - college).

• A monotone instrument: vj ∈ V = {1, 2, 3, 4} - father’s schooling level (high

school or less (≤ 12 years), some college (13–15 years), bachelor’s degree (16

years), master’s degree or higher (≥ 17 years)).

Furthermore, consider these identifying assumptions.

• The monotone treatment response (MTR) assumption: ∀j, t2 ≥ t1 : yj(t2) ≥ yj(t1)

ensures that the outcome function for each individual j is weakly increasing in

the treatment.

• The monotone treatment selection (MTS) assumption: ∀t, t2 ≥ t1 : E[y(t)|z = t2] ≥
E[y(t)|z = t1] states that individuals with higher observed treatment have either

a greater or equal potential mean outcome.

• The monotone instrumental variable (MIV) assumption: ∀t, v2 ≥ v1 : E[y(t)|v =

v2] ≥ E[y(t)|v = v1] assumes that the mean outcome is weakly increasing in the

instrument value.

• The monotone selection bias (MSB) assumption: ∀t, t2 ≥ t1, v2 ≥ v1 : E[y(t)|z =

t2, v = v2]− E[y(t)|z = t1, v = v2] ≥ E[y(t)|z = t2, v = v1]− E[y(t)|z = t1, v =

v1] states that the size of the selection bias is increasing in the value of the

instrument value.3

Finding the upper bound of the average treatment effect of a mother’s schooling

on her child’s schooling (E[y(1)]− E[y(0)]) under the MTR+MTS+MIV assumption is

equivalent to solving the linear program shown in Figure 2.1 as presented in Laffers

(2013a,b). Observed are frequencies of the 16 different categories of (y, z, v). The

linear program can be transformed to the standard form as shown in Figure 2.2.

61



maxπ

Average Treatment Effect︷ ︸︸ ︷[
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

]
× π

subject to

DATA








1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1




× π =




0.397

0.055

0.029

0.017

0.013

0.01

0.013

0.012

0.155

0.055

0.054

0.047

0.017

0.018

0.043

0.065








Observed

probabilities

MTS

{[
0 0 0 0 0 0 0 0 0 0 0 0 .19 .19 .19 .19 0 −.80 0 −.80 0 −.80 0 −.80

0 .19 0 .19 0 .19 0 .19 0 0 0 0 .19 .19 .19 .19 −.80 −.80 −.80 −.80 −.80 −.80 −.80 −.80

]

MIV








0 0 0 0 0 0 0 0 0 0 0 0 .13 −.58 0 0 0 .13 0 −.58 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 .13 −.13 0 0 0 0 .13 0 −.13 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .14 −.13 0 0 0 0 0 .14 0 −.13

0 .13 0 −.58 0 0 0 0 0 0 0 0 .13 −.58 0 0 .13 .13 −.58 −.58 0 0 0 0

0 0 0 .13 0 −.13 0 0 0 0 0 0 0 .13 −.13 0 0 0 .13 .13 −.13 −.13 0 0

0 0 0 0 0 .14 0 −.13 0 0 0 0 0 0 .14 −.13 0 0 0 0 .14 .14 −.13 −.13




× π ≤

[
0

0

]




0

0

0

0

0

0




π ≥




0
...

0


,

π∗ =
[0.2 0.2 0.003 0.052 0 0.029 0 0.017 0.013 0.01 0.013 0.012 . . .

. . . 0.16 0.055 0.054 0.047 0 0.017 0.018 0 0.042 0.001 0.01 0.055]′.

1

Figure 2.1: This linear program searches in the space of the joint probability dis-
tributions assigned to all combinations of the observed component (y, z, v) and the
unobserved component (y(0), y(1)) that are compatible (∀i, t : zi = t → yi = yi(t))
and that satisfy the MTR assumption. The space of the joint distributions is further
restricted to satisfy the MTS assumption and the MIV assumption, and to be compat-
ible with the observed probabilities. The optimal solution π∗ maximizes the average
treatment effect.
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Original Form

(min)maxπ cTπ

s.t
Adπ = p
Asπ ≤ bs

π ≥ 0

Added Slack Variables

(min)maxπ [cT0T]

[
π
v

]

s.t[
Ad 0
As −I

] [
π
v

]
=

[
p
bs

]

[
π
v

]
≥ 0

Standard Form

(min)maxπ c̄Tπ

s.t
Aπ = b
π ≥ 0

Depends on data Fixed

Figure 2.2: Converting the original linear program to its standard form. Blue elements
are fixed, and red elements depend on the data.

The following section will present different inferential methods and will discuss

their theoretical and practical advantages and disadvantages. This list of methods is

not exhaustive, and some computationally more expensive methods are not included

in the simulation study. Some of them will be discussed briefly.

2.3 Methods for Statistical Inference

2.3.1 Freyberger and Horowitz

This method is presented in Freyberger and Horowitz (2012) and is specially designed

for random linear programs of the form (2.1). The bound is estimated by the sample

analog, solving (2.2), and then we determine the vertex (a basic solution) of the set

of feasible solutions that corresponds to the optimal solution.4 We create a large

number of bootstrapped pseudo-samples and obtain values of the objective function

at the (previously) optimal vertex. The coordinates of this vertex have asymptotically

multivariate normal distribution. If there is only one optimal solution, as the sample

size increases, the probability that the correct vertex is chosen approaches one, and

the optimized objective value is normally distributed by the virtue of the Cramer–

3This assumption was not considered in de Haan (2011).
4The basic solution is a nonzero subvector, and the corresponding nonzero variables are called basic

variables.
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Wold theorem. If there are multiple optimal solutions, the error goes in the direction

of overcoverage.

The full procedure is as follows.

1. Generate a bootstrap sample of data with replacement, and let A∗ and b∗ denote

the estimates of A and b based on the bootstrap sample.

2. Let k̂max (k̂min) be the index of the optimal basic solution of the problem (2.2),

and define ∆∗
1k̂max

= n1/2(cT
k̂max

Â∗−1
k̂max

)b̂∗ (∆∗
2k̂min

= n1/2(cT
k̂min

Â∗−1
k̂min

)b̂∗), where the

subscript indicates the columns corresponding to the basic variables.

3. Repeat steps (1) and (2) many times, to obtain the empirical distribution of ∆∗
1k̂max

(∆∗
2k̂min

). Find c∗α,max (c∗α,min) that satisfy P∗(∆∗
1k̂max

≥ −c∗α,max) = 1− α (for lower

bound P∗(−∆∗
2k̂min

≤ c∗α,max) = 1− α).

4. The upper (lower) bound of the confidence set is L̂max + n−1/2c∗α,max (L̂min −
n−1/2c∗α,min).

When it comes to practical implementation, it is essential to find the columns that

correspond to the basic variables; i.e., those that have nonzero elements of the optimal

solution of (2.1). When using linear programming software, as a numerical artefact,

the nonbasic variables will not be exactly zero, so it is necessary to set a threshold

value to determine the zeros. This can be set to some number smaller than the pre-

cision of the optimization routine used to solve the linear program. Furthermore,

especially in small samples, the matrix Â∗
k̂max

need not be invertible; however, pseudo-

inversion can be used.5 This may happen if: (1) a simulated probability vector p has

some mass point of zero probability or (2) if an optimal solution of the linear pro-

gram is degenerate. The inversion or the pseudo-inversion is the most costly step in

the computation. Freyberger and Horowitz (2012) makes an assumption that rules

out degenerate optimal solutions of the linear program, which implies that the Akmax

matrix is invertible. This is not an appropriate assumption in the context of our prob-

lem. If economic assumptions that translate into the linear restrictions in our linear

program do not bind, they may give rise to the degenerate optimal solutions. How-

ever, these nonbinding constraints are not irrelevant. They do not bind for our vector

5The Moore–Penrose pseudo-inverse of a real matrix A is a matrix A+ that satisfies AA+A = A,
A+AA+ = A+
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of probabilities p but may bind for some other vector p̄, which can easily occur in the

bootstrap simulations. The distribution of the optimal vertex of the simplex of feasible

solutions changes with increases in the sample size. If the optimal solution is unique,

the larger the sample size, the smaller the number of different optimal vertices and

the more concentrated the distribution.

2.3.2 Percentile Bootstrap

The (approximate) percentile bootstrap confidence interval was proposed in Efron

(1979). The procedure is as follows.

1. Generate a bootstrap sample of data with replacement, and let A∗ and b∗ denote

the estimates of A and b based on the bootstrap sample.

2. Calculate the optimal value of (2.2) for the bootstrap sample, and denote it as

L∗max (L∗min).

3. Repeat steps (1) and (2) many times, to obtain the empirical distribution of L∗max

(L∗min).

4. The upper (lower) bound of the confidence set is the (1 − α)-quantile of the

distribution of L∗max, so that the number c solves P∗(L∗max ≤ cmax) = 1− α (or

α-quantile of the distribution of L∗min, so that the number cmin solves P∗(L∗min ≤
cmin) = α).

The percentile bootstrap is straightforward to implement and is transformation

respecting.6 However, it is not justified if the parameter of interest is on the boundary

of the parameter space (Andrews, 2000) or if the estimator is a nonsmooth function

of the parameter Horowitz (2001). This is often the case if the estimator is a result

of minimization or maximization of a discontinuous function, and asymptotic theory

based on a Taylor series expansion does not apply.

6The transformation-respecting property means that the percentile confidence interval for any
monotone transformation m(θ) of a parameter of interest θ is the transformed percentile interval for θ.
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2.3.3 Normalized and Centered Percentile Bootstrap

Horowitz (2001) recommends that the bootstrap should be used on asymptotically

pivotal statistics; therefore, this method normalizes and centers the bounds before

calculating the quantiles. This was also used in Bugni (2010) in the context of models

defined by moment inequalities. The procedure is described below.

1. Generate a bootstrap sample of data with replacement and let A∗ and b∗ denote

the estimates of A and b based on the bootstrap sample.

2. Calculate the optimal value of (2.2) for the bootstrap sample, and denote it as

L∗max (L∗min).

3. Repeat steps (1) and (2) many times, to obtain the empirical distribution of L∗max

(L∗min). Find c∗α,max (c∗α,min) that satisfy P∗(n1/2(L∗max − L̂max) ≥ −c∗α,max) = 1− α

(P∗(n1/2(L∗min − L̂min) ≤ c∗α,max) = 1− α).

4. The upper (lower) bound of the confidence set is L̂max + n−1/2c∗α,max (L̂min −
n−1/2c∗α,min).

2.3.4 Bias Corrected Percentile Bootstrap

Although consistent, the percentile bootstrap may give misleading results in finite

samples. The bias correction in the context of the percentile bootstrap intervals was

presented in Efron (1981). The heuristic bias adjustment in the context of bounds

analysis was proposed by Kreider and Pepper (2007), and its finite sample properties

were studied in Manski and Pepper (2009).

1. Generate a bootstrap sample of data with replacement, and let A∗ and b∗ denote

the estimates of A and b based on the bootstrap sample.

2. Calculate the optimal value of (2.2) for the bootstrap sample, and denote it as

L∗max (L∗min).

3. Repeat steps (1) and (2) many times, to estimate the bias correction term z0,max

(z0,min), the proportion of bootstrapped upper (lower) bounds that are lower than

the estimated upper (lower) bound; that is, z0,max = Φ−1(P∗(L∗max ≤ L̂max))

66



(z0,min = Φ−1(P∗(L∗min ≤ L̂min))) and then to get p0,max = Φ(2z0,max + z1−α)

(p0,min = Φ(2z0,min + zα)) , where z1−α is the (1− α)-quantile of the standard

normal distribution.

4. The upper (lower) bound of the confidence set is the p2-quantile of the distri-

bution of the bias corrected L∗max (L∗min), so the number cmax (cmin) that solves

P∗(L∗max ≤ cmax) = p0,max (P∗(L∗min ≤ cmin) = p0,min).

There also exists a bias-corrected and accelerated (BCa) bootstrap confidence inter-

val that corrects for the fact that the standard error for L̂max is not the same for all Lmax

as it would be under the standard normal approximation (Efron, 1987). However, the

estimation of the parameter of acceleration is computationally costly: it requires n

calculations of the optimal value. The BCa bootstrap is more precise and is second-

order accurate, so that the coverage error is of order 1/n instead of 1/
√

n as for the

percentile CIs.

2.3.5 Imbens and Manski

This method was developed in Imbens and Manski (2004) (IM) and was the first infer-

ential scheme for the partially identified scalar parameter. Unlike the percentile boot-

strap methods, which were developed for a point-identified parameter, this method

covers the true parameter with a prescribed probability, no matter what this true pa-

rameter happens to be.

1. Generate a bootstrap sample of data with replacement, and let A∗ and b∗ denote

the estimates of A and b based on the bootstrap sample.

2. Calculate the optimal value of (2.2) for the bootstrap sample, and denote it as

L∗max.

3. Repeat steps (1) and (2) many times, to get an estimate of the standard deviation

σ̂max (σ̂min) of Lmax (Lmin). Find cα that solves Φ(cα +
Lmax−Lmin

max{σ̂max,σ̂min} )−Φ(−cα) =

1− α.

4. The upper (lower) bound of the confidence set is L̂max + cασ̂max (L̂min + cασ̂min).
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The implementation is straightforward, and finding cα is simple. The asymptotic

properties for this interval were derived under the assumption that the upper and

lower bounds asymptotically behave like means. Stoye (2009) observes that one of

the assumptions that IM impose implies superefficient estimation of the length of

the identified set and proposed a weakened version of the assumption. It was also

recognized that inconsistency of the bootstrap comes from the boundary problem

(Andrews, 2000) and can be similarly resolved by pretesting whether the nuisance

parameter and the length of the identified set is zero or not. A similar idea was used

in Bugni (2010, 2011) in the context of models defined by moment inequalities.

2.3.6 Imbens and Manski Bias Corrected

This method is similar to the previous method with the difference being that the

confidence region is adjusted for the finite sample bias.

1. Generate a bootstrap sample of data with replacement, and let A∗ and b∗ denote

the estimates of A and b based on the bootstrap sample.

2. Calculate the optimal value of (2.2) for the bootstrap sample, and denote it as

L∗max (L∗min).

3. Repeat steps (1) and (2) many times, to obtain an estimate of the standard

deviation σ̂max (σ̂min) of Lmax (Lmin) and to estimate the finite sample bias by

bias∗max = E∗(L∗max) − L̂max (bias∗min = E∗(L∗min) − L̂min). Find cα that solves

Φ(cα +
Lmax−Lmin

max{σ̂max,σ̂min} )−Φ(−cα) = 1− α.

4. The upper bound of the confidence set is L̂max− bias∗max + cασ̂max (L̂min− bias∗min +

cασ̂min).

2.3.7 Projection

The linear programming formulation of the identified set allows us to introduce a

new method for constructing the confidence set.

Given that the only way that the data enters the analysis is via the vector of mass

probabilities p, we can consider the set of all probability vectors that do not differ

much from the observed p̂; more precisely, the set of all vectors p so that p̂ would not
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have been rejected as being equal to p by some test of equality of the vectors. Every

vector p in this set gives us an estimate of the identified interval. Taking a union of

these identified intervals across the set of vectors so that p̂ is not statistically different

from them gives a confidence set that meets the coverage requirement.

Therefore we propose the following confidence region:

Ĉn =
⋃

p∈P̂n

ΘI(p), (2.3)

P̂n =

{
p :

k

∑
i=1

pi = 1; ∀i = 1, . . . , k : pi ≥ 0;
k

∑
i=1

n
( p̂i

n − pi)2

pi ≤ q(1−α)
k−1

}
, (2.4)

where q(1−α)
k−1 is (1− α)-quantile of chi-squared distribution with k− 1 degrees of free-

dom and P̂n is a set of all probability vectors p so that a Pearson’s chi-squared test

would not have rejected the null hypothesis “H0: data come from p”.7 We project

the confidence interval for p into the one for the identified set; therefore, we call it a

projection. An idea similar to this one is presented in Woutersen and Ham (2013).

It is easy to show that the confidence region given by (2.3) guarantees the asymp-

totic coverage requirement:

lim
n→∞

Pr(Θ0 ⊆ Ĉn) = lim
n→∞

Pr


Θ(p0) ⊆

⋃

p∈P̂n

ΘI(p)


 ≥ lim

n→∞
Pr(p0 ∈ P̂n) ≥ 1− α, (2.5)

where the first equality is maintained because p0 ∈ P̂n =⇒
(

Θ(p0) ⊆
⋃

p∈P̂n
ΘI(p)

)
,

and the second is the coverage of a standard chi-squared test with fewer degrees of

freedom because ∑k
i=1 pi = 1. This procedure is schematically depicted in Figure 2.3.

The downside of this method is that it can be too conservative and the confidence

bounds may be too wide and uninformative, because the first inequality in 2.5 is

strict. There is no way that we can guarantee an exact coverage of this procedure. In

problems where it is suspected that the bootstrap procedures will fail, the projection

method may be preferable. If the confidence set based on the projection does not

differ much from the one based on the bootstrap, this suggests that the confidence

7There are many tests that can be used, and Pearson’s chi-squared test was chosen because it is
computationally convenient.

69



 

 

Confidence set 

  Lmin       Lmax 

𝑝̂ 

𝜋̂ 

  𝜒2 

  𝛼 

Joint probability 

Observed probability 

 

 

 

 

 

 

 

 

 

Figure 2.3: This scheme shows how the projection method works. For all observed
probability distributions that are not statistically different from p̂ according to a chi-
squared test, we find the joint distributions that maximize and minimize the average
treatment effect. The union of these intervals constitutes the confidence set with the
desired asymptotic coverage.

set has correct coverage. In contrast, if the two confidence sets differ, it should not be

concluded that the bootstrap failed to provide an accurate approximation.

Implementation requires an optimization over the set of probability vectors in the

outer loop. The projection method is therefore only feasible for small-scale problems.

2.3.8 Alternative methods

This subsection briefly discusses some alternative confidence sets that are not in-

cluded in the simulation study. These methods are omitted because they are imprac-

tical or computationally expensive.

• Bias-corrected and accelerated percentile bootstrap

• Calibration

• Subsampling

• Freyberger and Horowitz 2
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Bias-corrected and accelerated percentile bootstrap

Efron (1981) introduces the bias-corrected and accelerated percentile bootstrap inter-

val. The bias-correction part was presented in Subsection 2.3.4. The acceleration part

corrects for the fact that the variance of the estimator is nonconstant. More precisely,

suppose that there exists a monotone transformation φ = m(θ) of the parameter of

interest θ, so that φ̂ = m(θ̂) is normally distributed with a bias and a nonconstant

standard deviation φ̂ ∼ N(θ − z0σφ, σ2
φ), σφ = 1 + aφ. The parameter z0 is called

bias correction, and a is the acceleration parameter. Full derivation and discussion

of the acceleration parameter is in DiCiccio and Efron (1996).8 The calculation of the

acceleration parameter requires n evaluations of the statistic of interest and makes it

impractical for our purposes.

Calibration

Calibration as a technique to improve the coverage accuracy is presented in Efron and

Tibshirani (1993) and DiCiccio and Efron (1996). Suppose we are interested in the

100α% upper confidence bound L̂α
max, and let β(α) = Pr(Lmax < L̂α

max) denote the

true coverage probability. It is possible to use the bootstrap to estimate the calibration

curve β(α). We fix the estimator L̂max and create a large number of bootstrap samples,

and for every pseudo-sample, we calculate the upper confidence bound L̂∗αmax. This

requires many evaluations of L̂max, as the upper confidence bounds are also obtained

by the bootstrap. The estimated calibration curve is equal to β̂(α) = Pr∗(L̂max <

L̂∗αmax) = Pr∗(α̂∗ < α), where α̂∗ is the value for which the upper confidence bound is

equal to the estimated upper bound: α̂∗ : L̂∗αmax = L̂max. If we are interested in the 90%

upper confidence bound and β̂(0.93) = 0.9, then L̂∗0.93
max is the 90% upper confidence

bound.

Subsampling

Subsampling (Politis et al., 1999) provides a theoretically interesting alternative to the

bootstrap, because it correctly approximates the asymptotic distribution of a statistic

even in the cases when the bootstrap fails. It is based on drawing samples of smaller

8MATLAB’s bootci function uses the bias-corrected and accelerated percentile method as the de-
fault option.
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size without replacement. The main difference is that whereas the bootstrap draws

samples from the estimated model, the subsampling samples are drawn from the orig-

inal model. The subsampling theory is based on the U-statistic, and the requirements

for obtaining the correct asymptotic distribution are easily satisfied as follows.

• The subsample size bn must go to infinity at a rate lower than n: b→ ∞, bn/n→
0.

• nβ(θ̂n − θ) converges to some nondegenerate distribution J (with β known).9

• The limiting distribution J is continuous at the approximated quantile.

The biggest practical problem is the choice of bn. While the general asymptotic

theory requirements for the subsample size are satisfied easily, in finite samples, the

choice of bn greatly affects the size of the confidence sets. Furthermore, the subsam-

pling tends to be less precise than the bootstrap in situations where the bootstrap

works. The recent advances in the theory of subsampling provide conditions for uni-

form asymptotic validity (Romano and Shaikh, 2012).

Freyberger and Horowitz 2

This method is similar to the method presented in Subsection 2.3.1, with the only

difference being that instead of calculating the objective value corresponding to the

optimal vertex of the feasible solutions of problem (2.1), we calculate the optimum

across all the vertices that give objective function values in the cn neighborhood of

L̂max. This is a matter of pretesting, where it is not known whether the basic solution

that is optimal in our data sample is also optimal for the true data-generating process.

However, as the data sample increases in size, it must not become too large. The

sequence of constants cn must converge to zero but not too fast (cn[n/(log log n)]
1
2 →

∞), so that by the Law of Iterated Logarithm, the optimal vertex (or vertices) will not

be missed, with the probability going to one as the sample size n approaches infinity.

1. Generate a bootstrap sample of data with replacement, and let A∗ and b∗ denote

the estimates of A and b based on the bootstrap sample.

9Usually, β is either 0.5 or 1, but β can be estimated following the arguments in Bertail et al. (1999).
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Unique solution Multiple solutions 

Figure 2.4: This figure illustrates the simplex of feasible solutions for Problem 2.1.
There is a unique solution in the left pane. The objective function may happen to be
collinear with one of the active inequalities as depicted in the right pane.

2. Let β̂max be the set of indices of basic solutions of the problem (2.2) that sat-

isfies |L̂k̂max
− L̂k| ≤ cn, and define ∆∗ = maxk∈β̂max

n1/2(cT
k̂

Â∗−1
k )b̂∗, where the

subscript indicates the columns corresponding to the basic variables.

3. Repeat steps (1) and (2) many times, to obtain the empirical distribution of ∆∗
k̂max

.

Find c∗α,max that satisfy P∗(∆∗
k̂max
≥ −c∗α,max) = 1− α.

4. The upper bound of the confidence set is L̂max + n−1/2c∗α,max.

The implementation challenges are similar to the method in Subsection 2.3.1 with

extra effort required to identify the set of indices β̂max; i.e., vertices of the simplex of

the feasible solutions that cannot be rejected as nonoptimal. This is in general a chal-

lenging problem, especially if the solutions are degenerate. One solution is to create a

large number of bootstrap datasets and to consider all basic solutions that are optimal

in at least one generated dataset. This method should theoretically be preferred to

the previous method in case when the true optimal solution is not unique as schemat-

ically shown in Figure 2.4, and the previous procedure may produce conservative

confidence sets that are too wide.
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V = 1 V = 2 V = 3 V = 4
Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1

Y = 0 0.3965 0.0134 0.0550 0.0099 0.0291 0.0126 0.0173 0.0121
Y = 1 0.1553 0.0169 0.0550 0.0182 0.0539 0.0433 0.0467 0.0648

Table 2.1: Cell probabilities of observed variables for Scenarios 1 and 3.

2.4 Monte Carlo Simulation Study

This simulation study considers three different scenarios that mimic real situations.

1. Upper bound under the MTR+MIV assumption.

2. Upper bound under the MIV assumption that has no identifying power.

3. Identified set under the relaxed MTR+MIV+cMTS assumption.

2.4.1 Scenario 1 – Empirical Application

The first scenario considers the inference on the upper bound under the MTR+MIV

assumption. The MTR assumption sets the lower bound of the average treatment

effect to be fixed at zero; hence, we are only interested in the upper bound. The setup

considered is that of Example 2.2.1. This scenario is relevant, as it was used in the

empirical paper de Haan (2011). It is assumed that the true vector of probabilities p

is the one constructed from the data from de Haan (2011), and Table 2.1 lists these

probabilities. This probability vector was used to generate 1000 pseudo-samples. For

each pseudo-sample, we calculated the confidence sets based on different methods.

For methods based on the bootstrap, we used 200 bootstrap replications from each

pseudo-sample to approximate the relevant quantiles and to construct the confidence

sets.10

The identified set in this situation is (0, 0.58822). An analytic expression for the

upper bound is available.11

Figure 2.5 reports empirical coverages from the simulation. All methods show

undercoverage in small samples. There is not a clear winner, but the bias-corrected

10For confidence regions, Efron (1987) recommends 2000 bootstrap replications. However, the differ-
ences between using 200 and 2000 bootstrap replications were negligible.

11In our case, with the binary outcome y(y) and binary treatment z, the expression for the upper
bound on the average treatment effect under the MTR-MIV assumption reduces to
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methods and the normalized percentile bootstrap together are closest to the nominal

coverage. In contrast, the canonical percentile bootstrap performs worst. The Frey-

burger and Horowitz method is very similar to the Imbens and Manski method. For

very large sample sizes, the differences diminish, and bias-corrected methods show

slight overcoverage.

Figure 2.6 shows the empirical distributions of the upper 90% confidence bounds.

All the methods are similar in terms of the variance and the shape of this distribution.

This suggests that the gains from using the computationally more expensive bias-

corrected accelerated percentile method to correct for shape or skewness are likely to

be low.

Figure 2.7 depicts the evolution of the distribution of the upper 90% confidence

bound as the sample size increases. All methods show a very similar pattern. The

bias and the difference between the bias-corrected methods and their uncorrected

counterparts diminish as the sample size increases. For a very large sample size, the

empirical distributions of the different confidence regions almost coincide.

The histogram of different optimal basic solutions of the linear program is shown

in Figure 2.8. For a very large sample size, the optimum of the linear program (2.2)

is always realized on one particular vertex. This is because the benchmark linear

program has a unique optimal solution, and this solution is selected with probability

approaching one as the sample size grows.

The projection method for the upper 90% confidence bound is too conservative

for n = 16912 as shown in Figure 2.9. Its empirical coverage is 100%, and the differ-

ence between the 10% quantile of the distribution of the confidence sets based on the

projection and the true upper bound is 0.0149.

2.4.2 Scenario 2 – Assumption with No Identifying Power

This scenario will focus on inference on the upper bound under the MIV assumption

with an artificially generated probability vector (shown in Table 2.2) so that the mono-

tone instrument has no identifying power, and the MIV assumption is independent of

4

∑
m=1

P(v = m) ·
[

min
m2≥m

(P(z = 0|v = m2)(1− E[y|z = 0, v = m2]) + P(z = 1|v = m2)E[y|z = 1, v = m2])

]
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V = 1 V = 2 V = 3 V = 4
Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1

Y = 0 0.1703 0.0058 0.1703 0.0058 0.1703 0.0058 0.1703 0.0058
Y = 1 0.0667 0.0073 0.0667 0.0073 0.0667 0.0073 0.0667 0.0073

Table 2.2: Cell probabilities of observed variables for Scenario 2.

the other observable variables. This scenario is interesting, as it highlights the fragility

of the studied inference methods. A case similar to this one was considered in Manski

and Pepper (2009) to illustrate the finite sample bias of the MIV bounds. In this case,

a naive bootstrap procedure will approximate poorly the limiting distribution, and

the associated confidence regions may suffer from low coverage. Chernozhukov et al.

(2013) also consider a similar scenario to motivate a half median unbiased estimator

of the bounds.

The identified set is (−0.28979, 0.71021).

Figure 2.10 shows that the probability coverage does not improve as the sample

size increases. With a small sample, some simulated probability vectors had zero mass

probability and the identified sets were empty, even though the true data-generating

process leads to a nonempty identified set. These cases were omitted and make the

results seem better for smaller samples. The canonical percentile bootstrap performs

worst, the Imbens and Manski method and the Freyberger and Horowitz method are

similar and the two bias-corrected methods and the normalized and scaled bootstrap

are closest to the desired nominal coverage.

Figure 2.11 shows that the distributions of the upper 90% confidence bound for

the different methods do not coincide even for very large sample sizes. The variance

decreases, but coverage does not improve. Among all the methods, only the canonical

bootstrap differs from the other competing methods and has the lowest coverage. The

shapes of the distributions are similar.

Figure 2.12 depicts how the distributions of the upper 90% quantile change with

increased sample size for different methods. For small sample sizes, the distributions

tend to be slightly skewed to the left. All the upper confidence bounds show the same

pattern.
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Figure 2.13 sheds some light on why the bootstrap methods fail to result in correct

nominal coverage in the second scenario. Unlike in the first scenario, the histogram

of the indices of the optimal basic solutions is similar for different sample sizes and

does not change even for a very large sample size. The optimal solution, therefore, is

not unique even asymptotically.

The upper 90% confidence bound based on the projection method led to a coverage

of 97% and may actually be preferred over the bootstrap methods in this case for

n = 16912. Figure 2.14 shows its distribution in comparison with the distributions of

the other confidence bounds.

2.4.3 Scenario 3 – Sensitivity Analysis

In the third scenario, we consider inference on the whole identified set under a relaxed

version of the cMTS+MIV+MSB assumption. The identifying assumptions are relaxed

in the following ways.

• P[zi = t =⇒ yi = yi(t)] ≥ 0.999 - 0.1% of the outcomes may be mismeasured).

• ∀z2 ≥ z1 : E[y(t)|z = z1] − E[y(t)|z = z2] ≤ 0.01 - the difference between the

potential probability of getting into college for children with college-educated

mothers cannot be greater than that of children with mothers without college

education.

• ∀v2 ≥ v1 : E[y(t)|v = v1]− E[y(t)|v = v2] ≤ 0.01 - the difference between the

potential probability of getting into college for children with college-educated

fathers cannot be greater than that of children with fathers without college edu-

cation.

This scenario is interesting because relaxing assumptions can help researchers to con-

duct sensitivity analysis or to determine the source of the identifying power. In this

case, there is no analytical solution available, and the linear programming formulation

is essential. Laffers (2013a) provides a detailed discussion on the method and moti-

vation for different relaxations of the identifying assumptions. Linear programming

widens the scope of the usefulness of bounds analysis to different sets of identifying

assumptions and sensitivity analyses. The vector of probabilities is the same as that

in scenario 1 shown in Table 2.1. The identified set is (−0.336, 0.244).
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Figure 2.15 highlights the fact that the differences between the methods arise par-

ticularly in small samples. The confidence bounds show slight overcoverage even for

large sample sizes, and the bias-corrected percentile bootstrap is closest to the nom-

inal coverage. In small samples, the (canonical) percentile bootstrap shows severe

undercoverage for both the upper and lower bounds. The coverage of the Freyburger

and Horowitz method is slightly smaller than desired, whereas the coverage of both

Imbens and Manski methods are above the nominal values. The normalized and the

bias-corrected bootstrap seem to perform best in the current setup.

Figure 2.16 presents the coverage probability of the whole identified set, even

though this was not an objective of these confidence sets. Differences are only visi-

ble in small samples, and here the bias-corrected bootstrap and the Freyburger and

Horowitz method outperform the other methods. The Imbens and Manski methods

together with the normalized bootstrap are slightly conservative, whereas the per-

centile bootstrap shows severe undercoverage.

When comparing the empirical distributions of the lower and upper confidence

bounds (Figure 2.17), the distributions with smaller variance are preferred. The meth-

ods based on the bootstrap show the smallest variance with the exception of the

normalized bootstrap methods. Furthermore, the shape is similar except for the dis-

tribution of the upper confidence bound based on the normalized bootstrap, which is

bimodal.

Figure 2.18 shows that the optimal solution is not unique even if the sample size is

very large. The distribution of the optimal basic solution settles down to two values.

Figure 2.19 shows that the 90% upper confidence bound is too conservative with

an empirical coverage of 99.2%.

2.5 Conclusion

This paper has considered statistical inference for a partially identified scalar param-

eter in models with discrete observable variables. Furthermore, the methods con-

sidered in this paper are inferential alternatives that complement the identification

results of Laffers (2013b), where the upper and lower bounds of a parameter are

found by means of linear programming. The simulation study used three different
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simulation designs to compare the finite sample performance of different methods

for constructing confidence bounds on the partially identified parameter. The three

scenarios include: an actual empirical application, a case where one of the assump-

tions has no identifying power and relaxed assumptions that are relevant for studying

sensitivity analysis. The results from the simulation study suggest the following im-

plementation recommendations.

• In small samples, bootstrapping may lead to problems with (1) zero mass prob-

ability and (2) possible empty sets. Both of these problems should be addressed

in any simulation study that considers performance of inference schemes on

bounds in small samples.

• Possible degenerate optimal solutions lead to failure of assumption 4 of FH,

which invalidates its asymptotic correct coverage.

• Bias correction is useful; bootstrap estimators are prone to bias, especially in

small samples.

• Centering and normalization when using a bootstrap improves its finite sample

properties.

• A histogram of the bootstrapped optimal basic solutions of a linear program can

be useful for detecting bootstrap failure. If there exists only one optimal basic

solution, the bootstrap yields the correct asymptotic distribution.

• The confidence set obtained by the projection method presented in this paper

can be helpful, especially if there are reasons to believe that the bootstrap will

fail. However, the projection method cannot detect the bootstrap failure.

As for all simulation studies, the results and recommendations presented in this

paper are not general but design specific. Nevertheless, they shed some light on

the behavior of different confidence sets for researchers conducting empirical studies

using bounds analysis in models with discrete variables.
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Chapter 3

BOUNDING AVERAGE TREATMENT

EFFECTS USING LINEAR

PROGRAMMING

Abstract

This paper presents a method of calculating sharp bounds on the average treatment ef-

fect using linear programming under identifying assumptions commonly used in the

literature. This new method provides a sensitivity analysis of the identifying assump-

tions and missing data in an application regarding the effect of parent’s schooling

on children’s schooling. Even a mild departure from identifying assumptions may

substantially widen the bounds on average treatment effects. Allowing for a small

fraction of the data to be missing also has a large impact on the results.

JEL: C4, C6, I2.

Keywords: Partial identification, Bounds, Linear Programming, Average treatment

effect, Sensitivity analysis.
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3.1 Introduction and Literature Review

The recent literature on the average effect of parent’s schooling on children’s schooling

appears inconclusive. Identification strategies based on twins, adoptees or instrumen-

tal variables lead to results that differ in size and statistical significance in terms of

the average treatment effect and that lead to conflicting policy recommendations on

educational reform. An attempt to address this problem was made in de Haan (2011),

who studied the nonparametric bounds on the average treatment effect and relied on

weaker nonparametric assumptions that have clear economic interpretations. Nev-

ertheless, these assumptions may and should be challenged. This study discusses

the validity and the importance of these assumptions. Moreover, this paper presents

a method that allows some assumptions to be relaxed and an examination of how

fragile or robust the reported bounds are to some mild violations of these assump-

tions. This paper also looks at how missing data may affect the results, and it imposes

no structure on the missingness mechanism. Knowing what drives the results, and

which assumptions are important, may sharpen the discussion about the underlying

identifying assumptions, and also that about the economic problem at hand.

The contribution of this paper is twofold. First, this paper presents a flexible way

of calculating the sharp bounds on the average treatment effect using a linear pro-

gram. If all the variables are discrete, it is often practical to achieve identification by

conducting a search of the set of joint probability distributions of the observed and

unobserved variables. Second, this paper uses the linear programming method to

compute the bounds on the average treatment effect when some or all of the identi-

fying assumptions are relaxed, also allowing for the presence of missing data, in the

context of the effect of parents’ schooling on children’s schooling. The linear pro-

gramming formulation helps to clarify why one presumably irrelevant identifying

assumption becomes important once another assumption is relaxed, and therefore,

the two assumptions work as substitutes for each other.

There are two opposing explanations of how a parent’s schooling affects a child’s

schooling. One relates to causation and the other to selection. Either the parents

change during their education process (and this changes the way that they approach

the education of their children) or the child’s education merely reflects the trans-

mission of the high-ability genes from his or her parents. An understanding of the
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intergenerational transmission of education has very important policy consequences.

First, policy makers care about the return on investment to schooling. If the link be-

tween parents’ schooling and children’s schooling is causal, the beneficial spillover

effect has to be taken into account when devising an educational policy. Second, if

the effect is purely related to the transmission of genes, then the inequality in oppor-

tunities may simply be a consequence of the distribution of high-ability genes, and

inequality-reducing policy is unlikely to be beneficial.

There are three main identifying strategies in the literature for estimating the causal

effect of parents’ education on children’s education, as presented in a comprehensive

overview in de Haan (2011).

The first approach is based on twins data in Behrman and Rosenzweig (2002, 2005)

and Antonovics and Goldberger (2005). Children of identical twins should not differ

much in the unobservable genetic endowments that they inherit from their parents,

and this helps to remove an important source of correlation between parents’ and

children’s schooling. This approach assumes that any differences other than genetic

between the schooling levels of identical twins are exogenous.

The second method is based on adopted children (Björklund et al., 2006), where

there clearly is no genetic link between the parents and the adopted children. This

method assumes that the way the parents raise their children is unrelated to their

schooling level.

The last approach is based on an instrumental variable. The strategy is to find a

variable that provides a source of variation in parents’ schooling that is unrelated to

children’s schooling. Black et al. (2005) use a school reform in Norway that changed

the number of compulsory years of education from seven to nine. Chevalier (2004) use

a law that changed the minimum school leaving age in the 1970s in Britain. Oreopou-

los et al. (2006) also use the timing of the compulsory-schooling law changes as an

instrument for completed parents’ education. College availability is used as an instru-

ment for maternal education in Currie and Moretti (2003) for US data. Carneiro et al.

(2013) instruments maternal educational attainment with schooling cost during the

mother’s adolescence. Maurin and McNally (2008) is based on the series of events in

May 1968 that led to the lowering of thresholds in the education system and enabled

students to remain longer in the higher education system. Validity of the results from
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these papers hinges upon the validity and relevance of the instruments in use and

may be challenged. It is also known that instrumental variable models only estimate

the average treatment effect for a subpopulation of individuals (LATE of Imbens and

Angrist (1994)).

The results from all these analyses are mixed. They differ in the size and statisti-

cal significance of the potential effect of the intergenerational transmission of human

capital. The analysis in Holmlund et al. (2011) compares the three different iden-

tification strategies using Swedish data and finds similar patterns to the previous

literature. They conclude that the differences follow from the identification, not from

the different data sources. These findings stress the importance of the careful inspec-

tion of the identification strategy. As a solution to the diverging results, the analysis

in de Haan (2011) studies the bounds on the average treatment effect rather than

a point-identified model, and the analysis is based on weaker identifying assump-

tions.1 This paper will discuss the validity and the importance of these assumptions.

The analysis will consider the sensitivity of the results to some mild deviations from

the identifying assumptions and to the missing data, and why the sensitivity analysis

is relevant.

This paper also contributes to the literature on bounds analysis advocated by Man-

ski (1990, 1995, 1997, 2003, 2007, 2008) by providing a way to conduct a sensitivity

analysis. This paper uses the linear programming identification framework presented

in Laffers (2013b), which is based on Galichon and Henry (2009a). Not only is it pos-

sible to determine which assumptions are important and drive the results but also

the linear programming formulation helps to quantify how sensitive the results are.

Note that there are other papers that consider partially identified models using linear

programming; most notably, Balke and Pearl (1997, 1994), Honoré and Tamer (2006),

Manski (2007), Chiburis (2010) and Freyberger and Horowitz (2012).

Section 3.2 introduces the setup and notation, and how an identification problem

can be captured within a linear programming framework. Section 3.3 presents data

and results, and a sensitivity analysis on the effect of mothers’ schooling on children’s

schooling follows in Section 3.4. Section 3.5 concludes.

1One may argue that these assumptions are not weaker, they are just different. “Weaker” means
that these assumptions are not strong enough to deliver point identification.
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3.2 Method and Identifying Assumptions

3.2.1 Notation

Following the notation of Manski (1990), child j from population J has a specific re-

sponse function yj(.) that maps the schooling of parent t ∈ T (a treatment) to the

child’s schooling yi(t) ∈ Y (an outcome). For every child, we observe the schooling of

his or her parent zj (a realized treatment), schooling yj ≡ yj(zj) (a realized outcome), and

other parent’s (or grandparent’s) schooling vj ∈ V (a monotone instrument), but we do

not observe the child’s schooling yj(t) for parents’ schooling t 6= zj (a counterfactual

outcome). The data reveal the probability distribution P(y, z, v) (realized outcomes,

realized treatments and instruments), yet the probability distribution of the coun-

terfactual potential outcomes P(y(t1), . . . , y(tk)) remains unknown.2 The goal of the

analysis is to uncover some features of the unobserved probability distribution of

counterfactual outcomes P(y(t1), . . . , y(tk)). The feature of interest may be an expec-

tation of the child’s schooling if his or her parents’ schooling is equal to t (E[y(t)]), or

it may be the average treatment effect of the change of parents’ schooling from s to t

on the child’s schooling (∆(s, t) = E[y(t)]− E[y(s)]).

Under exogenous selection, the average treatment response to treatment t (E[y(t)])

is point identified, but this assumption is often not plausible, as discussed later. De-

pending on the strength of the maintained identifying assumptions, the expectation

of children’s schooling with parents’ education equal to t may be set rather than point

identified. There may exist an interval of values for E[y(t)] so that all the values in

this interval are compatible with the observed probability distribution P(y, z, v) and

with the identifying assumptions.

3.2.2 Method

The method of obtaining the bounds for average treatment effects follows in this sub-

section. For a given set of assumptions, instead of analytically deriving the bounds,

we translate all the assumptions into restrictions on the joint probability distribu-

tion of the unobserved component (y(t1), y(t2), ..., y(tm)) and the observed compo-
2Formally, the population forms a probability space (I,F ,P), where the population of individuals

I is the sample space, F is a set of events and P is a probability measure. Hence, the only source of
randomness is the choice of individual. The individual’s behavior is deterministic.
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nent (y, z, v). The joint probability distribution carries complete information about

the probabilistic behavior of all the variables in the model; there is nothing more that

could possibly be learned.

If the outcome is a child’s college attendance, and the treatment is the college

attendance of a parent, so that it takes two different values (0 - no college, 1 - college),

and we are interested in identifying the probability that a child will obtain a college

degree if his or her parent has a college education (E[y(1)]), we will search in the

space of probability distributions of (y(0), y(1), y, z, v) that are compatible with the

observed probabilities of (y, z, v), that satisfy all the identifying assumptions, and that

minimize (maximize) E[y(1)], which would give the lower (upper) bound. If both the

assumptions and the feature of interest are linear in the joint probability distribution

(y(0), y(1), y, z, v), then finding a lower or upper bound corresponds to solving one

linear program.

The approach of the presented identification scheme follows that of Galichon

and Henry (2009a) and Ekeland et al. (2010), which was further extended in Laffers

(2013b).

The linear programming method presented in this paper offers flexible identifi-

cation. It is easy to add, remove or change assumptions. This paper will use this

method to explore how sensitive the bounds are to some mild violations of the iden-

tifying assumptions.

The following subsections discuss how different identifying assumptions translate

into restrictions on the joint probability distribution (y(0), y(1), y, z, v) in the light of

the following specific example from de Haan (2011).

• yi ∈ Y = {0, 1} - child’s college (0 - no college, 1 - college).

• zi ∈ Z = {0, 1} - mother’s (father’s) college (0 - no college, 1 - college).

• vi ∈ V = {1, 2, 3, 4} - other parent’s (grandparent’s) schooling level (high school

or less (≤ 12 years), some college (13–15 years), bachelor’s degree (16 years),

master’s degree or more ( ≥ 17 years)).

The aim is to learn about the average treatment effect of an increase in mother’s

college attendance on a child’s college attendance (∆(0, 1) = E[y(1)]− E[y(0)]).
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3.2.3 Identifying assumptions

This subsection explains how the linear program whose extremes are the bounds on

the ATE is created. The presentation of identifying assumptions begins with a discus-

sion of how the unobserved component (y(0), y(1)) must be linked to the observed

component (y, z, v), and it is called the correct specification. The marginal distribu-

tion of the joint probability distribution of (y(0), y(1), y, z, v) must be the probability

distribution of the observed component, and this is called compatibility with ob-

served probabilities. Furthermore, the monotone treatment response, the monotone

treatment selection, the conditional monotone treatment selection and the mono-

tone instrumental variable assumptions are presented and explained. The figures

associated with these assumptions elucidate how they translate into restrictions on

the joint probability distribution (y(0), y(1), y, z, v).

Correct Specification

The observed component (y, z, v) has to be compatible with the unobserved com-

ponent (y(0), y(1)); that is, they are linked by ∀j : zj = t =⇒ yj(t) = yj. If

this assumption fails, it means that either the child’s schooling level or the mother’s

schooling level is not correctly measured or that child j’s schooling is not determined

by mother’s education.3

Figure 3.1 depicts the support of the joint probability distribution of (y(0), y(1), y, z, v)

∈ Y3 × T × V. Every point in the figure represents a subpopulation of individuals.

The blue circle denotes children with a college degree (y = 1), with a college-educated

mother (z = 1), and with a grandparent with a high school education (v = 1). The un-

observed counterfactual outcomes for these children are y(0) = 1 and y(1) = 1. The

observed component (y = 1, z = 1, v = 1) implies that y(1) = 1, which is compati-

ble with the counterfactual outcomes. For a child that belongs to the subpopulation

denoted by a red triangle, the observed component (y = 0, z = 1, v = 1) implies that

y(1) = 0. At the same time, the unobserved counterfactual outcomes are y(0) = 0 and

y(1) = 1, and therefore, not compatible with the observed component. There must be

3The assumption that outcome is a deterministic function of a treatment is intrinsic in the potential
outcome framework of Rubin (1974).
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no such children, and the probability of the point (0, 1, 0, 1, 1) must be equal to zero.

Figure 3.2 shows all the points that can be assigned nonzero probabilities.

Compatibility with Observed Probabilities

The joint probability distribution of (y(0), y(1), y, z, v) must be compatible with the

observed probabilities of (y, z, v). In the data, 39.6% of the children do not have

college education (y = 0), their mother has a college degree (z = 1), and their father

has a high school education (v = 1) so that the probabilities in the column of (0, 1, 1)

sum to 0.396 as depicted in Figure 3.3.

Monotone Treatment Response

There seems to be a consensus that a child’s schooling does not decrease with mother’s

schooling. The monotone treatment response (MTR) assumption (Manski, 1997) in-

terprets this statement such that for every child, the schooling level is an increasing

function of mother’s schooling, specifically ∀j, t2 ≥ t1 : yj(t2) ≥ yj(t1). The MTR

assumption is a strong assumption and guarantees that the average treatment effect

is nonnegative.

The MTR assumption rules out all the rows of unobservables for which y(1) ≤ y(0)

does not hold (that is if (y(0), y(1)) = (1, 0)) as shown in Figure 3.4. Given the MTR

assumption, there must exist no children who would obtain a college degree if their

mother had not, and who would not finish college if their mother had finished college.

Monotone Treatment Selection

The assumption of monotone treatment selection (MTS) (Manski and Pepper, 2000)

provides another interpretation of how a child’s schooling increases with mother’s

schooling. Instead of assuming the selection bias away by imposing exogenous treat-

ment selection (∀t1, t2 : E[y(t)|z = t1] = E[y(t)|z = t2]) that delivers point identi-

fication, the MTS assumption restricts the direction of the selection bias.4 The MTS

assumption states that for a fixed potential mother’s college attendance, children with

observed college-educated parents have a weakly higher probability of graduating

4Ordinary least squares regression analysis assumes ETS, and it point identifies the average potential
outcome: E[y(t)] = E[y(t)|z = t]P(z = t) + E[y(t)|z 6= t]P(z 6= t) = E[y(t)|z = t].
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from college. That is, the probability that a child with a college-educated mother

obtains a college degree (E[y(1)|z = 1]) is higher than the potential probability of a

child with a mother without a college degree if (counterfactually) this mother had a

college education (E[y(1)|z = 0]). Moreover, the probability that a child with a less-

educated mother finishes college (E[y(0)|z = 0]) is not as high as it would be for a

child with a more-educated mother if (counterfactually) this mother does not have

a college education (E[y(0)|z = 1]). The differences in these probabilities may stem

from fact that higher-educated parents tend to have higher abilities, and these can

be transmitted to their children, and that these parents with higher abilities create a

more stimulating environment for their children. Formally, the MTS assumption is

∀t2 ≥ t1 : E[y(t)|z = t2] ≥ E[y(t)|z = t1].

The MTS assumption restricts the space of the joint probability distribution func-

tions of (y(0), y(1), y, z, v) to those that are compatible with the corresponding set of

linear constraints. Figure 3.5 shows that the probability of graduating from a college

if the mother’s school attainment is equal to t conditional on her having a college

degree (E[y(t)|z = 1], which is calculated using the probabilities in blue rectangles) is

greater than or equal to the probability conditional on her not having a college degree

(E[y(t)|z = 0], which is calculated using the probabilities in red (dashed) rectangles).

The MTS assumption states that given a mother’s schooling, any difference in un-

observed characteristics between college-educated and non-college-educated mothers

does not make a child’s probability of graduating from a college lower than that of

children with higher-educated mothers.

Conditional Monotone Treatment Selection

The conditional monotone treatment selection (cMTS) assumption, formally ∀i, t2 ≥
t1 : E[y(t)|z = t2, v = i] ≥ E[y(t)|z = t1, v = i], also states that a child’s potential

probability of getting into college increases with the mother’s education but condi-

tional on (and hence regardless of) the father’s (or grandparent’s) schooling level. The

father’s (or grandparent’s) education is, therefore, restricted to have no impact on the

direction of the selection bias due to mother’s education.

Restricting the space of the joint probability distribution functions is similar to the

MTS assumption, with the conditioning on events [z = t, v = i] instead of [z = t].
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Figure 3.6 illustrates the effect of the cMTS assumption for a subpopulation with

v = 1.

The difference between the MTS and the cMTS assumption is explained in Laffers

(2013d). The distinction is similar to whether or not to include father’s education into

a regression as an explanatory variable as discussed in Holmlund et al. (2011). The

inclusion (similar to the cMTS assumption) would imply that the effect of mother’s

schooling is net of assortative mating effects. On the other hand, not including fa-

ther’s schooling as an explanatory variable (similar to the MTS assumption) means

capturing both direct effects of mother’s education and indirect effects of assortative

mating. As was pointed out in Laffers (2013d), when considering higher-educated

mothers that “married down” to less-educated men, we have to consider any ob-

served or unobserved factors that made these mothers self-select into such marriages.

These mothers might have compensated for unobserved low ability, or the cost of

finding a partner might have been high, which is true especially for older women

(Lichter, 1990), and children of older women have lower cognitive skills on average

(Zybert et al., 1978).

Monotone Instrumental Variable

The monotone instrumental variable (MIV) assumption (Manski and Pepper, 2000) is

a weakened version of the instrumental variable assumption (∀i1, i2 : E[y(t)|v = i1] =

E[y(t)|v = i2]). It ensures that a child’s mean potential schooling is weakly increasing

in its grandparent’s schooling. The MTS assumption is, in fact, a special case of the

MIV assumption.

The restrictions on (y(0), y(1), y, z, v) implied by the MIV assumption work in a

similar way as for MTS as depicted in Figure 3.7. Given the mother’s college attain-

ment, a child’s probability of graduating from college is greater for children with

higher-educated grandparents.

The average treatment effect is a linear function of the joint probability distribu-

tion of (y(0), y(1), y, z, v). To find the upper and lower bounds on ATE, we conduct

a search in the joint probability distributions that maximizes and minimizes the aver-

age treatment effect under linear identifying constraints, which is a linear program.

The resulting bounds on ATE are sharp by construction, and the identifying assump-
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tions translate one-to-one to restrictions on the joint probability distribution; therefore,

there is no information gain or loss. If there is no joint probability distribution that

satisfies the constraints imposed by the identifying assumptions and is compatible

with the data, then the linear program has no feasible solution, and the model can

be refuted. The linear program that leads to the upper bound on ATE of an increase

in mother’s college education on the probability that the child finishes college is de-

picted in Figure 3.8, and the joint probability distribution that maximizes the ATE

under the MTR+cMTS+MIV assumption is shown in Figure 3.9. Lemma 3 shows that

if the identification problem takes the form of a linear program, then the identified

set is an interval between the lower and upper bound.5 The average treatment effect

is a linear function of the joint probability distribution of (y(0), y(1), y, z, v).

Lemma 3. The identified set for the ATE is an interval.

Proof. Let p denote the probability vector of the observed variables. Let Π(p) de-

note the set of all joint probability distributions of the observed and unobserved

components that are compatible with p and with the identifying assumptions, and

let ATE(π) be the average treatment effect when the joint probability distribution

is π. Furthermore, let ub(p) ≡ maxπ∈Π(p) ATE(π) be the upper bound, and let

lb(p) ≡ maxπ∈Π(p) ATE(π) be the lower bound on ATE under the set of identify-

ing assumptions.

Consider a nontrivial case where lb(p) and ub(p) exist and lb(p) 6= ub(p). It is suf-

ficient to show that ∀a ∈ (lb(p), ub(p)) : ∃π ∈ Π(p) : ATE(π) = a. For every a, there

must exist γ so that a = γlb(p) + (1− γ)ub(p). Let πub = arg maxπ∈Π(p) ATE(π) and

πlb = arg minπ∈Π(p) ATE(π) denote the joint probability distributions that maximize

and minimize the ATE, respectively. For πa = γπub + (1− γ)πlb, it must hold that

πa ∈ Π(p), because Π(p) is defined as a set of vectors that satisfy a finite number

of linear equalities and inequalities. Finally, ATE(πa) = ATE(γπub + (1− γ)πlb) =

γATE(πub) + (1 − γ)ATE(πlb) = a because ATE(π) is a linear function, and this

completes the proof.

The identified interval is finite, because the feasible set is bounded.

5The proof is very similar to that in Freyberger and Horowitz (2012).
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Manski (1990, 1995, 2003) study the bounds on E[y(t)] and ∆(s, t) under various

combinations of these assumptions (apart from cMTS), and de Haan (2011) explains

these assumptions in great detail in the context of the presented schooling application.

3.3 Data and Results

3.3.1 Data

The Wisconsin Longitudinal Study (WLS) involves a random sample of 10317 high

school graduates in Wisconsin in 1957.6 WLS also collects information from parents,

spouses, and siblings of the original graduates. Similarly to de Haan (2011), this

paper uses the data from the most recent surveys (2004: original respondents or their

parents, 2005: siblings, 2006: spouses) and restricts the sample to the parents that

have children from their first marriage, because spouses are not linked to children.

Children that might still be at school (1.5%) are eliminated from the sample. Overall,

the data consist of information on 21545 children.

3.3.2 Results

This paper employs the 90% confidence sets based on the bias-corrected bootstrap

method of Imbens and Manski (2004), which considers the situation where the aim

is to cover the unknown parameter with a fixed probability asymptotically.7 The

confidence sets are based on 500 bootstrap replications. Different statistical inference

schemes, when the identified set follows from a linear programming formulation, are

compared in Laffers (2013c). There is no clear winner, but the method that is used

here performed well in most scenarios.

Our discussion of the results begin with the bounds on the effect of an increase in

a mother’s (father’s) education on the probability that the child has a college degree.

Table 3.1 presents the bounds for two different monotone instruments: other parent’s

and grandparent’s schooling level, under different sets of identifying assumptions.

The no-assumption bounds are not very informative, and the length of the identified

6Available at http://www.ssc.wisc.edu/wlsresearch/.
7The confidence sets that cover the whole identified set asymptotically are generally larger and may

be preferable for a policy maker concerned with robust decisions as is argued in Henry and Onatski
(2012).

106



interval is equal to one. The MTR assumption only affects the lower bound and sets

it equal to zero with the exception that the effect of a father’s attendance at college

increases when the grandparent’s schooling level is used as the monotone instrument,

but the lower bound is not significantly different from zero under the 90% confidence

level. The MTS assumption reduces the upper bound from 64.1% to 36.5% for the

mother’s college education and from 68.1% to 39.3% for the father’s college education.

The cMTS is much stronger for an increase in the mother’s college attendance than

for an increase in the father’s, and it reduces the upper bound on the probability that

the child obtains a college degree to 21.4% compared with 37.2% for the father’s. The

MIV only slightly affects the lower bound for the father’s college attendance and has

no effect on the upper bound. The monotone instrument affects the upper bound

indirectly, via conditioning when the cMTS assumption is assumed. None of the sets

of assumptions yields a lower bound significantly different from zero.

Table 3.2 shows the bounds on the effect of a parent’s college degree on a child’s

years of finished schooling. No assumption bounds are not informative. The results

show a similar pattern for both mother’s and father’s college as treatments and other

parent’s or grandparent’s schooling level as monotone instruments. The MTR as-

sumption increases the lower bound to zero. The MTS assumption reduces the upper

bound from 10.8 years to 1.8 years when mother’s college is a treatment and from

11.6 years to 1.9 years for father’s college. The MIV assumption affects the upper

bound only in connection with the cMTS assumption and if grandparent’s schooling

is used as the monotone instrument. Other parent’s schooling level has greater iden-

tifying power than grandparent’s schooling, and the resulting bounds are narrower.

Finally, under the MTR+cMTS+MIV assumption, the effect of mother’s education on

child’s years of completed schooling is between zero and 1.08 years or 1.52 years,

respectively, when father’s and grandparent’s schooling level is used as the mono-

tone instrument. The effect of father’s college degree increases child’s schooling by

0 to 1.43 years if mother’s education is used as the MIV and 0.008 years (three days)

to 1.7 years with grandparent’s schooling level as the MIV. The lower bound is not

statistically significant.
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3.4 Sensitivity Analysis

This section studies the sensitivity of the results to relaxed identifying assumptions.

The flexibility of the linear programming identification framework allows this in a

straightforward manner. The identifying assumptions are relaxed in the following

ways.

• Mismeasurement of Outcomes or Treatments (MOT):

P[zi = t⇒ yi = yi(t)] ≥ 1− αMOT.

• Relaxed monotone treatment response (rMTR):

P[t2 ≥ t1 ⇒ yi(t2) ≥ yi(t1)] ≥ 1− αMTR.

• Relaxed monotone treatment selection (rcMTS):

∀z2 ≥ z1 : E[y(t)|z = z1]− E[y(t)|z = z2] ≤ αcMTS.

• Relaxed monotone instrumental variable (rMIV):

∀v2 ≥ v1 : E[y(t)|v = v1]− E[y(t)|v = v2] ≤ αMIV .

• Missing data (MISS): at most αMISS-fraction of the sample is not observed, and

nothing is assumed about the nature of the missingness.

Mismeasurement of outcomes or treatments (MOT) says that for αMOT fraction

of the population, observed outcome yi may not be equal to the outcome of the actual

treatment zi, either because yi or zi is mismeasured or because individual i’s outcome

is not a deterministic function of the treatment. As the data were collected mostly

via phone interviews, it is reasonable to expect that some entries were not recorded

correctly, although the probability of mismeasurement is likely to be low. The joint

distribution that maximizes the upper bound on the ATE of mother’s college degree

on child’s college completion under the MTR+cMTS+MIV assumption with the MOT

relaxed by αMOT = 0.001 is shown in Figure 3.10.

The assumption of relaxed monotone treatment response (rMTR) states that αMTR

proportion of the population is allowed to have the outcome function that is not

monotone in the treatment. The assumption that children’s education is weakly in-

creasing in mother’s education is consistent with a wide range of studies. Behrman

and Rosenzweig (2002) suggest that one possible channel that works in the other di-
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rection is that a more educated woman spends less time with her children.8 The

results in the literature deal with the average response to mother’s schooling; how-

ever, it is not unreasonable to think of a small proportion of children whose schooling

would not be increasing in mother’s schooling. Figure 3.11 shows how relaxing the

MTR assumption by αMTR = 0.01 allows up to 1% of children to respond negatively

to the treatment: mother’s college degree.

Relaxed conditional monotone treatment selection (rcMTS) says that the differ-

ence in mean potential outcomes between subpopulations with lower and higher ob-

served treatments cannot be larger than δcMTS when conditioning on a value of the

monotone instrument. An argument that goes against this assumption is that the

outcome (child’s college degree) only reflects the benefits and does not consider the

cost of finishing college for the mother. A mother’s college degree is an investment.

If the cost of studying is very high, it may be optimal for the future mother to give

up college education, and she may eventually earn more and be able to support the

child’s education better.

Similarly, relaxed monotone instrumental variable (rMIV) states that the differ-

ence in mean potential outcomes between subpopulations with lower and higher in-

strument values cannot be larger than δMIV .

So far, all the relaxed assumptions are straightforward modifications of the orig-

inal assumptions and still linear in the joint probability distribution. This is not the

case when considering the missing data. Even though the survey’s responsiveness’

rates are very good, around 90%, the fact that the data are not missing-at-random

may lead to potential problems. Hauser (2005) argues that there is a systematic non-

responsiveness in the studied dataset and that the missingness mechanism therefore

cannot be ignored. We remain agnostic about the actual process that drives the miss-

ingness. Let P denote the space of all probability distributions of observed variables.

If no assumptions are made about the missing data, the probability distribution of the

missing component pMISS can be any element in P . The data reveals p̂n ∈ P , where n

is the sample size. Let αMISS be the fraction of the missing part, and let PMISS be the

8This analysis was challenged by Antonovics and Goldberger (2005), who claim that their results
are driven by a specific data coding. In a reply, Behrman and Rosenzweig (2005) argue that their story
is supported by an additional data source.
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space of all probability vectors that are convex combinations of the data component

p̂n and arbitrary probability vector of the missing component pMISS.

PMISS = {(1− αMISS) p̂n + αMISS pMISS|pMISS ∈ P} (3.1)

To find bounds on ATE under the MISS assumption, it is necessary to calculate the

minimum and the maximum ATE across all probability vectors in PMISS. The linear

program takes the vector of observables p from PMISS as fixed. The outer loop is an

optimization in PMISS, which is a convex set. Note that there are different ways to

model the missing data. Here the interpretation is that αMISS proportion of the data is

missing. No assumptions are made about the missing subpopulation separately; the

identifying assumptions must hold for the whole population.9 The following lemma

states that the identified set is an interval under the MISS assumption.

Lemma 4. Suppose that the matrices and the vector that define the equalities and the inequal-

ities in Π(p) are continuous in p element-wise. Then the identified set for the ATE under the

missing data assumption is an interval.

Proof. This proof uses the notation from the proof of Lemma 3. Further define pmax =

arg maxp∈PMISS ub(p) and pmin = arg minp∈PMISS lb(p). It is sufficient to show that

∀a ∈ (lb(pmin), ub(pmax)) ∃p ∈ PMISS : ∃π ∈ Π(p) : ATE(p) = a.

Firstly, note that PMISS defined in equation 3.1 is a convex set. Consider any

p1, p2 ∈ PMISS. From 3.1, there exist pM
1 and pM

2 such that p1 = (1− αMISS) p̂n +

αMISS pM
1 and p2 = (1− αMISS) p̂n + αMISS pM

2 . For any 0 < λ < 1, it must hold that

λp1 + (1− λ)p2 = (1− αMISS) p̂n + αMISS(λpM
1 + (1− λ)pM

2 ) ∈ PMISS as λpM
1 + (1−

λ)pM
2 ∈ P .

Secondly, Theorem 1.1 in Martin (1975) shows that ub(p) (and lb(p)) is a continu-

ous function of p on PMISS.

Finally, by virtue of the Intermediate Value Theorem (Munkres, 2000), the im-

age set ub(PMISS) must contain the interval (ub( p̂n), ub(pmax)), and the image set

lb(PMISS) must contain (lb(pmin), lb( p̂n)), and this, together with Lemma 3, com-

pletes the proof.

9Note that the nature of some identifying assumptions (e.g., the MTR assumption) are such that
they must also hold for every subpopulation.
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All sets of assumptions used in this paper satisfy the assumption of the continuity

of the equalities and of the inequalities that define the set of feasible joint probability

distributions of (y(0), y(1), y, z, v).

We will now look more closely at the effect of the increae in mother’s college

education on the probability that the child has a college degree with father’s school-

ing level as a monotone instrument for the sake of simplicity. The results with child’s

years of schooling as the treatment are qualitatively similar, and the average treatment

effect has an appealing interpretation of a probability increase that a child has a col-

lege degree. Figure 3.12 illustrates the sensitivity of the bounds to different deviations

from the MOT, MTR, cMTS and MIV assumptions.

Relaxing the (MOT) leads to the lower bound under the MTR, and the MTR+cMTS

+MIV assumption remains at zero. The lower bound under the MIV assumption is

linear in the relaxation parameter αMOT. The upper bound under the benchmark

MTR+cMTS+MIV assumption jumps from 21% to 35% when 1% of the outcomes

are allowed to be mismeasured. The shape of the upper bound curve is convex.

The already large upper bounds under the MTR assumption and under the MIV

assumption do not respond to αMOT as steeply. It seems that the stronger assumptions

make the results more fragile to mild deviation from MOT.

The MTR assumption does not affect the upper bounds on ATE at all. The lower

bound shows the same linear pattern for all studied models. This is not surprising

because allowing 1% of children to respond negatively to mother’s college increase

cannot lead to an ATE smaller than 1%. Deviation from the cMTS assumption only

affects the upper bound on ATE and in an exactly linear way.

The MIV assumption itself has weak identifying power and only affects the upper

bound. If the potential probability that a child gets a college degree is not greater

than 2% for children with less-educated fathers (αMIV = 0.02), then this assumption

is irrelevant, and the upper bound increases to the no-assumption bound. The upper

MTR+cMTS+MIV bound is not affected at all.

Figure 3.13 shows how the results are sensitive to missing data. The lower bound

stays at zero if the MTR assumption is made. Under the MIV assumption, the lower

bound is linear in the proportion of missing observations. The upper bound under

the MTR+MIV assumption and under the MIV assumption is similar and is linearly
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increasing in αMISS. The upper bound under the benchmark MTR+cMTS+MIV as-

sumption gets less sensitive with increases in the amount of missing data, and the

shape of this sensitivity curve is convex as it was for the MOT assumption.

So far, this analysis has considered the different relaxations one by one. Two

different scenarios illuminate how the identifying assumptions interact. In the first,

“optimistic”, scenario, the assumptions are relaxed slightly. It is assumed that 1% of

children may respond to mother’s college negatively, that for up to 0.1% of children,

the data on mother’s or child’s college attendance may be mismeasured and also that

the potential probability of a child’s getting a college degree cannot be greater by

more than 1% for a child with a lower-educated mother (cMTS) and father (MIV).

Such relaxations lead to bounds on the effect of mother’s college on child’s college

from −1% to 24.36% as shown in Table 3.3. Adding the assumption that 1% of the

data are missing shifts the upper bound to 28.62%. It is apparent that the missing

data assumption is the most important determinant of the change in the upper bound.

Assuming that 1% of the data are missing, the additional relaxations only change the

upper bound from 27.31% to 28.62%.

Considering the more realistic (“pessimistic”) scenario with 5% of children poten-

tially responding negatively to mother’s college increase, 1% of mismeasured data,

5% relaxation of the cMTS assumption and the MIV assumption, the effect is between

−5% and 44.1%, so that the upper bound more than doubles from 21.44%, which is

the upper bound for the benchmark specification. Adding that up to 10% of the data

may be missing, which is the actual rate of survey responsiveness, the upper bound

jumps to 53.27%.

This paragraph looks more closely at the last interesting result that the MIV does

not affect the bounds if the cMTS assumption is made. The linear program formu-

lation allows us to inspect which assumptions are most important by examining the

values of the Lagrange multipliers corresponding to the identifying assumptions. Fig-

ure 3.14 shows the Lagrange multipliers that correspond to the linear restrictions that

the cMTS assumption and the MIV assumption induce on the joint probability distri-

bution. The cMTS multipliers sum to one, so these numbers also show the relative

importance.10 The cMTS with v = 1—that is, for the subpopulation of children with

10Figure 3.12 and Table 3.4 show that relaxation of αcMTS translates to the upper bound one by one.
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high-school educated fathers—drives the result most, and it accounts for 58.08% of

the change in the upper bound. In the situation where the cMTS assumption holds

only for children with fathers that have at least some college education (v ≥ 2), the

MIV assumption actually matters. Table 3.4 shows that the MIV assumption has a

big impact on the upper bound by shrinking it from 46.71% to 27.54%. The Lagrange

multipliers provide some insight into the source of the identifying power. Figure 3.15

indicates that the MIV restriction, which says that the potential probability of get-

ting a college degree for a father with some college (v = 2) is greater than that of a

child with a high-school educated father (v = 1) if their mother had a college degree

(E[y(1)|v = 2] ≥ E[y(1)|v = 1]), now takes the role of the omitted cMTS for children

with less-educated fathers with the value of Lagrange multiplier of 0.582. Therefore,

not only is it possible to see that the MIV is now important but also this highlights

which part of the MIV assumption is relevant. The reason for this is that once the

cMTS is not assumed for children with lower-educated fathers (v = 1), nothing is

assumed about this large proportion of data, 58.21%, which is exactly the value of the

Lagrange multiplier for the part of the MIV assumption that binds. Therefore, in this

situation, the cMTS and the MIV assumptions are substitutes for each other.

3.5 Conclusion

de Haan (2011) provides a novel attempt to address an identification problem in the

context of intergenerational transmission of education. The minimal identifying as-

sumptions that she imposes do not deliver point identification, yet the bounds on the

treatment effects are still informative. This paper has presented a method for finding

sharp bounds on the average treatment effect via linear programming and has then

used this method to show how sensitive the bounds are to mild violations of the iden-

tifying assumptions. The sensitivity analysis provides insights into the determinants

of the identification. The bounds on ATE are very sensitive to missing data and pos-

sible mismeasurement of treatments or outcomes. Realistic relaxations of identifying

assumptions double the upper bound on the effect of mother’s college increase on the

probability that a child finishes college.
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The findings in this paper stress the importance of discussing the identification as-

sumptions in great detail. Special care should be exercised with the assumptions with

the greatest identifying power, and this paper has presented a method of identifying

and analyzing them.
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Figure 3.1: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The large blue circle corresponds to the population with the observed
y = 1, z = 1, v = 1, and the unobserved outcomes y(0) = 1 and y(1) = 1. The red
triangle stands for the individuals with y = 0, z = 1, v = 1, but y(0) = 0 and y(1) = 1
so the unobserved component is not compatible with the observed component.
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Figure 3.2: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The grey points correspond to populations for which the unobserved
component is incompatible with the observed component.
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Figure 3.3: An example of the joint probability distribution of (y(0), y(1), y, z, t). We
observe one of its marginal distributions from the data (numbers on the horizontal
axis).
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Figure 3.4: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The MTR assumption rules out points for which y(0) ≤ y(1) is violated.
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Figure 3.5: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The MTS assumption states that the expectation of y(t) based on the con-
ditional distribution of the blue region is greater than that based on the red (dashed)
region.
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Figure 3.6: The joint support of the observed (y, z, v) and the unobserved compo-
nent (y(0), y(1)). The cMTS assumption states that the expectation of y(t) based on
the conditional distribution of the blue region is greater than that based on the red
(dashed) region if we condition on v = 1.
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Figure 3.7: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The MIV assumption states that the expectation of y(t) based on the con-
ditional distribution of the blue region is greater than that based on the red (dashed)
region.

117



Bounds on the Effect of an Increase in the Mother’s (Father’s) College Education
on the Probability the Child has a College Degree

Outcome Child’s college
Treatment Mother’s college Father’s college
Instrument Father’s Grandparent’s Mother’s Grandparent’s

No Assumption
[-35.9%, 64.1%] [-35.9%, 64.1%] [-31.9%, 68.1%] [-31.9%, 68.1%]
(-36.5%, 64.7%) (-36.5%, 64.7%) (-32.6%, 68.7%) (-32.6%, 68.7%)

MTR
[0%, 64.1%] [0%, 64.1%] [0%, 68.1%] [0%, 68.1%]
(0%, 64.7%) (0%, 64.7%) (0%, 68.8%) (0%, 68.7%)

MTS
[-35.9%, 36.5%] [-35.9%, 36.5%] [-31.9%, 39.3%] [-31.9%, 39.3%]
(-36.5%, 37.9%) (-36.6%, 37.9%) (-32.6%, 40.6%) (-32.5%, 40.6%)

cMTS
[-35.9%, 21.4%] [-35.9%, 33.7%] [-31.9%, 30%] [-31.9%, 37.2%]
(-36.5%, 23.7%) (-36.5%, 35.4%) (-32.6%, 31.6%) (-32.5%, 38.7%)

MTR+MTS
[0%, 36.5%] [0%, 36.5%] [0%, 39.3%] [0%, 39.3%]
(-0%, 37.9%) (-0%, 37.9%) (0%, 40.6%) (-0%, 40.5%)

MTR+cMTS
[0%, 21.4%] [0%, 33.7%] [0%, 30%] [0%, 37.2%]
(0%, 23.7%) (0%, 35.3%) (0%, 31.7%) (0%, 38.6%)

MTR+MTS+MIV
[0%, 36.5%] [0%, 36.5%] [0%, 39.3%] [0.1%, 39.3%]
(0%, 37.9%) (-0.1%, 37.9%) (-0.1%, 40.7%) (-0.8%, 40.6%)

MTR+cMTS+MIV
[0%, 21.4%] [0%, 30.6%] [0%, 30%] [0.1%, 34.7%]
(0%, 23.6%) (-0.1%, 33.3%) (-0.1%, 31.7%) (-0.7%, 37.1%)

Sample size 16912 14614
90% confidence intervals in parentheses using the method of Imbens and Manski (2004)

Table 3.1: Bounds on the effect of an increase in the parent’s college education on
the probability that the child has a college degree under different identifying assump-
tions.
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Bounds on the Effect of an Increase in the Mother’s (Father’s) College Education
on the Years of Child’ schooling

Outcome Child’s years of schooling
Treatment Mother’s college Father’s college
Instrument Father’s Grandparent’s Mother’s Grandparent’s

No Assumption
[-12.164, 10.836] [-12.164, 10.836] [-11.387, 11.613] [-11.387, 11.613]
(-12.203, 10.874) (-12.204, 10.872) (-11.43, 11.656) (-11.43, 11.652)

MTR
[0, 10.836] [0, 10.836] [0, 11.613] [0, 11.613]
(0, 10.872) (0, 10.874) (0, 11.653) (0, 11.655)

MTS
[-12.164, 1.809] [-12.164, 1.809] [-11.387, 1.943] [-11.387, 1.943]
(-12.204, 1.881) (-12.203, 1.873) (-11.43, 2.004) (-11.432, 2.002)

cMTS
[-12.164, 1.088] [-12.164, 1.651] [-11.387, 1.437] [-11.387, 1.83]
(-12.204, 1.184) (-12.202, 1.723) (-11.429, 1.508) (-11.428, 1.892)

MTR+MTS
[-0, 1.809] [0, 1.809] [0, 1.943] [0, 1.943]
(-0, 1.875) (0, 1.87) (-0, 2.002) (-0.151, 2.003)

MTR+cMTS
[0, 1.088] [-0, 1.651] [-0, 1.437] [0, 1.83]
(-0, 1.185) (-0, 1.72) (-0, 1.513) (-0, 1.898)

MTR+MTS+MIV
[-0, 1.809] [-0, 1.809] [-0, 1.943] [0.008, 1.943]
(-0, 1.872) (-0.139, 1.872) (-0, 2.005) (-0.03, 2.007)

MTR+cMTS+MIV
[0, 1.088] [0, 1.523] [0, 1.437] [0.008, 1.702]

(-0.114, 1.185) (-0.111, 1.658) (-0.147, 1.509) (-0.202, 1.815)

Sample size 16912 14614
90% confidence intervals in parentheses using the method of Imbens and Manski (2004)

Table 3.2: Bounds on the effect of an increase in the parent’s college education on the
years of the child’s schooling under different identifying assumptions.
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maxπ

Average Treatment Effect︷ ︸︸ ︷[
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

]
× π

subject to

DATA








1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1




× π =



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0.017
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


Observed

probabilities

cMTS
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

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

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
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0
...

0


,

π∗ =
[0.244 0.152 0.039 0.016 0.019 0.010 0.010 0.007 0.013 0.010 0.013 0.012 . . .

. . . 0.155 0.055 0.054 0.047 0.008 0.009 0.004 0.014 0.007 0.036 0.009 0.056]′.

1

Figure 3.8: This linear program searches in the space of the joint probability dis-
tributions assigned to all combinations of the observed component (y, z, v) and the
unobserved component (y(0), y(1)) that are compatible (∀i, t : zi = t → yi = yi(t))
and satisfy the MTR assumption (as depicted in Figure 3.4). The space of the joint
distributions is further restricted to satisfy the cMTS assumption and the MIV as-
sumption, and to be compatible with the observed probabilities. The optimal solution
π∗ maximizes the average treatment effect.
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Figure 3.9: The joint probability distribution that maximizes the ATE of mother’s col-
lege increase on child’s probability of getting a college degree using other parent’s
schooling as a monotone instrumental variable under the MTR+cMTS+MIV assump-
tion. Numbers on the horizontal axis are probabilities of the observed variables.
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Figure 3.10: The joint probability distribution that maximizes the ATE of mother’s
college increase on child’s probability of getting a college degree using other parent’s
schooling as a monotone instrumental variable. The MOT assumption is relaxed by
αMOT = 0.001. We can see that this probability was assigned to the point (0, 1, 0, 2, 1).
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Figure 3.11: The joint probability distribution that minimizes the ATE of mother’s
college increase on child’s probability of getting a college degree using other parent’s
schooling as a monotone instrumental variable. The MTR assumption does not need
to hold for 1% of the children αMTR = 0.01. This 1% of children was assigned to the
point (1, 0, 1, 1, 1) and decreased the lower bound of ATE accordingly by 0.01.
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Bounds on Effect of Mother’s College Increase
on the Probability that the Child has a College Degree

MTR+cMTS+MIV
[Lower bound, Upper bound] = [0, 21.44%]

Confidence Set = (0, 23.74%)
Lower bound Upper bound

αMTR αMOT αcMTS αMIV αMISS
Optimistic 0.01 0.001 0.01 0.01 0.01

-1% 23.36% 22.44% 21.44% 27.31%
(-1.46%) (25.63%) (24.71%) (23.71%) ( 29.64%)

Pessimistic 0.05 0.01 0.05 0.05 0.10
-5% 35.66% 26.44% 21.44% 38.15%

(-5%) (37.74%) (28.71%) (23.71%) (40.67%)

Optimistic 0.01 0.001 0.01 0.01 0
[−1%, 24.36%]
(−1%, 26.63%)

0.01 0.001 0.01 0.01 0.01
[−1%, 28.62%]
(−1%, 29.66%)

Pessimistic 0.05 0.01 0.05 0.05 0
[−5%, 41.54%]
(−5%, 43.67%)

0.05 0.01 0.05 0.05 0.10
[−5%, 53.25%]
(−5%, 55.08%)

Note: Estimates are not bias corrected, n = 16912
90% confidence intervals in parentheses using the method of Imbens and Manski (2004)

Table 3.3: Sensitivity analysis of the bounds on the effect of mother’s college degree
on the probability that the child gets a college degree. Father’s education level was
used as a monotone instrumental variable.
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Bounds on ATE
MTR + cMTS [0, 21.44%]

MTR + cMTS + MIV [0, 21.44%]

If cMTS holds for v ∈ {2, 3, 4} only:

Bounds on ATE
MTR + cMTS [0, 46.71%]

MTR + cMTS + MIV [0, 27.54%]

Table 3.4: Bounds on the effect of mother’s college increase on the probability that the
child has a college degree using father’s schooling level as a monotone instrument.

Binding constraints under MTR+cMTS+MIV and Lagrange multipliers:

cMTS





E[y(0)|z = 1, v = 1] ≥ E[y(0)|z = 0, v = 1] 0.0303
E[y(1)|z = 1, v = 1] ≥ E[y(1)|z = 0, v = 1] 0.5505
E[y(0)|z = 1, v = 2] ≥ E[y(0)|z = 0, v = 2] 0.0282
E[y(1)|z = 1, v = 2] ≥ E[y(1)|z = 0, v = 2] 0.1106
E[y(0)|z = 1, v = 3] ≥ E[y(0)|z = 0, v = 3] 0.0554
E[y(1)|z = 1, v = 3] ≥ E[y(1)|z = 0, v = 3] 0.0823
E[y(0)|z = 1, v = 4] ≥ E[y(0)|z = 0, v = 4] 0.0766
E[y(1)|z = 1, v = 4] ≥ E[y(1)|z = 0, v = 4] 0.0637

Nonbinding constraints:

MIV





E[y(0)|v = 2] ≥ E[y(0)|v = 1] 0
E[y(1)|v = 2] ≥ E[y(1)|v = 1] 0
E[y(0)|v = 3] ≥ E[y(0)|v = 2] 0
E[y(1)|v = 3] ≥ E[y(1)|v = 2] 0
E[y(0)|v = 4] ≥ E[y(0)|v = 3] 0
E[y(1)|v = 4] ≥ E[y(1)|v = 3] 0

Figure 3.14: Binding and nonbinding identifying constraints under the
MTR+cMTS+MIV assumption with corresponding Lagrange multipliers.
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Figure 3.13: Sensitivity of the bounds on the effect of mother’s college increase on
probability change that child would graduate to missing data under different assump-
tions.

Binding constraints under MTR+cMTS+MIV:
(cMTS for v ∈ {2, 3, 4}) and Lagrange multipliers

cMTS





E[y(0)|z = 1, v = 2] ≥ E[y(0)|z = 0, v = 2] 0.0282
E[y(1)|z = 1, v = 2] ≥ E[y(1)|z = 0, v = 2] 0.5768
E[y(0)|z = 1, v = 3] ≥ E[y(0)|z = 0, v = 3] 0.0554
E[y(1)|z = 1, v = 3] ≥ E[y(1)|z = 0, v = 3] 0.0823
E[y(0)|z = 1, v = 4] ≥ E[y(0)|z = 0, v = 4] 0.0766
E[y(1)|z = 1, v = 4] ≥ E[y(1)|z = 0, v = 4] 0.0637

MIV E[y(1)|v = 2] ≥ E[y(1)|v = 1] 0.5821

Nonbinding constraints:

MIV





E[y(0)|v = 2] ≥ E[y(0)|v = 1] 0
E[y(1)|v = 2] ≥ E[y(1)|v = 1]
E[y(0)|v = 3] ≥ E[y(0)|v = 2] 0
E[y(1)|v = 3] ≥ E[y(1)|v = 2] 0
E[y(0)|v = 4] ≥ E[y(0)|v = 3] 0
E[y(1)|v = 4] ≥ E[y(1)|v = 3] 0

Figure 3.15: Binding and nonbinding identifying constraints under the
MTR+cMTS+MIV assumption (cMTS for v ∈ {2, 3, 4}) with corresponding Lagrange
multipliers.
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Chapter 4

A NOTE ON BOUNDING AVERAGE

TREATMENT EFFECTS

Abstract

The monotone treatment selection (MTS) assumption together with the monotone

instrumental variable (MIV) assumption imply bounds on average treatment effects

that differ from those commonly reported in the applied literature. Instead, for the

bounds to be correct, we should use an MTS assumption conditional on the value of

a monotone instrument (cMTS). In this paper, we present an empirical example of

bounding the effect of mothers education on children’s education, in which the MTS

and cMTS assumptions lead to considerably different bounds on the treatment effects.

JEL: C4, C6, I2.

Keywords: Partial identification; Bounds; Average treatment effect.
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4.1 Introduction

Different identification strategies often lead to differences in the estimated treatment

effects. As a result, identifying assumptions are often a matter of some controversy.

For instance, Manski (1990, 1995, 2003) suggests more credible inference based on

weaker assumptions that lead to set identification. The purpose of this note is to show

that monotone instrumental variable (MIV) bounds on average treatment response

can only be applied to sharpen the monotone treatment selection (MTS) bounds if the

MTS assumption holds conditional on the value of the instrument (cMTS).1 As the

MTS and cMTS assumptions are non-nested, they can lead to different results. In the

empirical example, we find substantially different bounds on the effect of an increase

in a mother’s college education on the probability of a child graduating from college

if the father’s level of schooling serves as the MIV.

4.2 Notation and Setup

Following the notation in Manski (1990), let individual j from population J have a

specific response function yj(.) that maps an ordered treatment t ∈ T to an out-

come y ∈ Y. For each individual, we observe a realized treatment zj, a realized

outcome yj ≡ yj(zj) and an instrument vj ∈ V. Data reveals the probability distri-

bution P(y, z, v), yet the distribution of the counterfactual potential outcomes P(y(.))

remains unknown. We would then like to discern the average treatment response

E[y(t)] and the average treatment effect of changing treatment from s to t (∆(s, t) =

E[y(t)]− E[y(s)]). The sharp lower (LBE[y(t)]) and upper (UBE[y(t)]) bounds on the av-

erage treatment response E[y(t)] for the following identifying assumptions are proven

in Manski (1997) and Manski and Pepper (2000).

• The monotone treatment response (MTR) assumption: ∀j, t2 ≥ t1 : yj(t2) ≥ yj(t1)

ensures that the outcome function for each individual j is weakly increasing in

1For the sake of brevity, we refer to the monotone instrument as the instrument, even though it is
not an instrument in a traditional sense. Instead, it is a version of an instrument for which the mean
independence restriction is relaxed (Manski and Pepper, 2000).
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the treatment. The MTR assumption implies the following bounds on E[y(t)]:

E[y|z ≤ t] · P(z ≤ t) + ymin · P(z > t) ≤ E[y(t)] ≤ ymax · P(z < t) + E[y|z ≥ t] · P(z ≥ t).

(4.1)

• The monotone treatment selection (MTS) assumption: ∀t, t2 ≥ t1 : E[y(t)|z = t2] ≥
E[y(t)|z = t1] states that individuals with higher observed treatment have either

a greater or equal potential mean outcome. The MTS assumption results in

ymin · P(z < t) + E[y|z = t] · P(z ≥ t) ≤ E[y(t)] ≤ E[y|z = t] · P(z ≤ t) + ymax · P(z > t).

(4.2)

• The monotone instrumental variable (MIV) assumption: ∀t, v2 ≥ v1 : E[y(t)|v =

v2] ≥ E[y(t)|v = v1] ensures that the mean outcome is weakly increasing in the

instrument value and leads to

∑i∈V P(v = i)[max
i1≤i

LBE[y(t)|v=i1]] ≤ E[y(t)] ≤ ∑i∈V P(v = i)[min
i2≥i

UBE[y(t)|v=i2]]. (4.3)

The MTR and MTS assumptions combined yield the following bounds on the mean

treatment response

E[y|z < t] · P(z < t) + E[y|z = t] · P(z ≥ t) ≤ E[y(t)] ≤ E[y|z = t] · P(z ≤ t) + E[y|z > t] · P(z > t).

(4.4)

Suppose now that we wish to bound E[y(t)] using the MTR, MTS and MIV as-

sumptions. Consider the following procedure.

Step 1: Apply the MTR+MTS bounds (4.4) on the subpopulation for which the in-

strument takes a specific value i to obtain the upper and lower bounds on

E[y(t)|v = i].

Step 2: Apply the MIV bounds (4.3) using the lower and upper bounds of E[y(t)|v = i]

from Step 1.

Using this procedure, we obtain the following bounds on the mean treatment response
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∑i∈V P(v = i)[max
i1≤i

(E[y|z < t, v = i1] · P(z < t|v = i1) + E[y|z = t, v = i1] · P(z ≥ t|v = i1))]

≤ E[y(t)] ≤ (4.5)

∑i∈V P(v = i)[min
i2≥i

(E[y|z = t, v = i2] · P(z ≤ t|v = i2) + E[y|z > t, v = i2] · P(z > t|v = i2))].

This note argues that this procedure, which is often used in the applied litera-

ture, need not generally yield correct bounds on E[y(t)] under the MTR+MTS+MIV

assumption.2 This is because in the first step we do not obtain correct bounds on

E[y(t)|v = i] as the MTS assumption need not hold conditional on the instrument v

taking the specific value i.

By using the bounds (4.5), we implicitly assume the following assumption in place

of the MTS assumption

• The conditional monotone treatment selection (cMTS) assumption: ∀t, i, t2 ≥ t1 :

E[y(t)|z = t2, v = i] ≥ E[y(t)|z = t1, v = i] - individuals with higher observed

treatment have a greater or equal potential mean outcome conditional on the

value of the instrument.

The cMTS assumption differs from the MTS assumption and may in general lead

to different bounds on the average treatment response and subsequently to differ-

ent bounds on the average treatment effect. The MTR+cMTS assumption leads to

correct bounds on E[y(t)|v = i] in the first step and subsequently correct bounds

on E[y(t)] in the second step. Therefore, this note asserts that bounds obtained by

the described procedure actually arise from the MTR+cMTS+MIV assumption and

not the MTR+MTS+MIV assumption as commonly reported. The following empirical

example shows that these bounds can be substantially different.

2See e.g. González (2005), Gundersen and Kreider (2009), Gundersen et al. (2012), Kreider and
Pepper (2007) or Kreider et al. (2012). A notable exception is Chiburis (2010), which warns that con-
ditioning changes the meaning of the assumptions and so makes the conditioning on the value of the
instrument explicit in its definition of the MTS assumption. This note differs from Chiburis (2010) in
that it compares the MTR+MTS+MIV and the MTR+cMTS+MIV bounds and discusses the conditions
under which the MTS and cMTS assumptions imply each other.
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4.3 Empirical Illustration

Consider the problem of bounding the effect of an increase in a mother’s college

education on the probability of a child’s college graduation using the father’s level of

schooling as the monotone instrument (see de Haan (2011) for a comprehensive study

and data description). In the spirit of the potential outcome framework (Rubin, 1974),

each child is assumed to have an individual deterministic outcome function for which

we assume no interactions.3,4

• yj ∈ Y = {0, 1} - child’s college (0 - no college, 1 - college),

• zj ∈ Z = {0, 1} - mother’s college (0 - no college, 1 - college)

• vj ∈ V = {1, 2, 3, 4} - father’s schooling level (high school or less (≤ 12 years),

some college (13–15 years), bachelor’s degree (16 years), master’s degree or

higher (≥ 17 years)).5

The MTS and cMTS assumptions have different meanings. The MTS assumption

states that, for a fixed potential mother’s college attendance, children with observed

college-educated parents have a weakly higher probability of graduating from college.

That is, the probability that a child with a college-educated mother obtains a college

degree (E[y(1)|z = 1]) is higher than the potential probability of a child with a mother

without a college degree if (counterfactually) this mother had a college education

(E[y(1)|z = 0]). Moreover, the probability that a child with a less educated mother

finishes college (E[y(0)|z = 0]) is not as high as it would be for a child with a more

highly educated mother if (counterfactually) this mother had not a college education

(E[y(0)|z = 1]). The differences in these probabilities may potentially stem from

the fact that more highly educated parents tend to have greater abilities that they

can transmit to their children and that these same parents create a more stimulating

environment for their children.

The cMTS assumption also states that the potential probability of children obtain-

ing a college degree increases with the mother’s education but is conditional on the

father’s schooling level. In other words, the father’s schooling level is restricted to

3The stable unit treatment value assumption (known as the SUTVA Assumption (Rubin, 1974)).
4Manski (2013) studies the identification of the treatment response with social interactions.
5de Haan (2011) considers the effect of father’s education using mother’s education as the monotone

instrument.
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have no impact on the direction of the selection bias due to mother’s education. If we

consider the subsample of women who have married less educated men, it seems less

clear that the children of highly educated women have greater educational attainment.

This could be due to unobserved factors that explain why these women self-select

themselves into marriage with less educated men. The women who "married down"

to low educated men might have done so to compensate for unobserved low ability.

Also, Search theory (Becker, 1974; Oppenheimer, 1988) suggests that women tend to

marry down if the cost of additional search for a partner is high, which is true espe-

cially for older women (Lichter, 1990) as the supply of potential partners decreases

with time for women (Goldman et al., 1984). Therefore, we can expect these women

to be on average older when having their children. Children of older mothers gener-

ally perform worse when it comes to cognitive skills (Zybert et al., 1978) and there is

some empirical support for the direct causal effect of mother’s age at birth on child’s

schooling (Kalmijn and Kraaykamp, 2005). Therefore, it is important to distinguish

between the MTS and cMTS assumptions because their meanings are different and

because of their consequences for the identification of the average treatment effect.

The cMTS assumption does not necessarily imply the MTS assumption and this

situation is known in the literature as Simpson’s paradox (Freedman et al., 2007).

Subsequently, the bounds based on the MTS assumption need not be wider than the

bounds based on the cMTS assumption.

If we strengthen the cMTS assumption so that regardless of the value of the instru-

ment, the sample of individuals with higher treatment will have higher mean poten-

tial outcome, that is ∀t, i1, i2, ∀t2 ≥ t1 : E[y(t)|z = t2, v = i2] ≥ E[y(t)|z = t1, v = i1],

then the MTS assumption holds.6 This means that conditioning on the treatment is

the dominant determinant of the mean potential outcome. Under the assumption

that the potential outcome y(t) is independent of the instrument v, conditional on the

treatment z for all values of z and t, the two assumptions are equivalent. We can think

6Proof:

E[y(t)|z = t2] = ∑
i∈V

E[y(t)|z = t2, v = i]P(v = i|z = t2) ≥ min
i∈V

E[y(t)|z = t2, v = i] ≥

≥ max
i∈V

E[y(t)|z = t1, v = i] ≥ ∑
i∈V

E[y(t)|z = t1, v = i]P(v = i|z = t1) = E[y(t)|z = t1].
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of this as an exclusion restriction: the instrument does not affect the outcome directly,

only via its explanation for the treatment.

To identify the lower and upper bounds on the average treatment effects, we con-

duct a search in the space of the joint probability distribution functions of (y(0), y(1),

y, z, v) that satisfy the MTR, MTS and MIV assumptions, and that are compatible with

the probability distribution of the observed component (y, z, v). The joint distribution

describes the complete probabilistic behavior of all the variables that we model; there-

fore, this approach guarantees the sharpness of the bounds by construction. The MTR,

MTS and MIV identifying assumptions translate into linear restrictions on the joint dis-

tribution of (y(0), y(1), y, z, v). Because the average treatment effect is also linear in

the joint distribution, finding an upper bound for the treatment effect corresponds to

a linear program.7,8 The joint distribution that maximizes the average treatment effect

under the MTR+MTS+MIV assumption is shown on Figure 4.1 and the corresponding

linear program in Figure 4.2. Under this assumption, the upper bound on the average

treatment effect is 36.5%, which is substantially greater than 21.4% – the upper bound

under the MTR+cMTS+MIV assumption. Hence, the bounds reported in de Haan

(2011) are too narrow if the MTS assumption (rather than the cMTS assumption) is

assumed.

The results in the Table 4.1 show the bounds on the effect of an increase in the

mother’s college education on the probability of her child having a college degree

under different menus of assumptions. We observe that the identifying power of the

cMTS assumption is greater than the MTS assumption in the present application. We

can also see that neither the MTS nor the cMTS assumption determines the sign of

the average treatment effect and that the upper bounds differ. The MTR assump-

tion rules out the negative effect on the average treatment effect. In addition, the

MIV assumption plays no role once we assume either the MTS assumption or the

cMTS assumption. However, if we did not make a distinction between the MTS and

cMTS assumptions, we would falsely conclude that the MIV assumption contracted
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Bounds on the Effect of an Increase in the Mother’s College Education
on the Probability the Child has a College Degree

Setup Assumptions [Lower Bound, Upper Bound]
LinProg (this paper) No Assumptions [-0.358, 0.641]
LinProg (this paper) MTS [-0.358, 0.365]
LinProg (this paper) cMTS [-0.358, 0.214]
LinProg (this paper) MTR [0, 0.641]
LinProg (this paper) MTR + MTS [0, 0.365]
LinProg (this paper) MTR + cMTS [0, 0.214]
LinProg (this paper) MTR + MTS + MIV [0, 0.365]
LinProg (this paper) MTR + cMTS + MIV [0, 0.214]

de Haan (2011) (MTR + MTS + MIV ?) [0, 0.214]
Note: Estimates not bias corrected, n = 16, 912

Table 4.1: Presented are the bounds obtained from a search in the space of the joint
distribution functions of (y(1), y(2), y, z, v), that satisfy the identifying assumptions
and are compatible with the observed distribution of (y, z, v). The results in the final
row are from de Haan (2011) (p. 881), in which the MIV bounds (4.3) are applied to
sharpen the MTR+MTS bounds (4.4) on E[y(t)|v = i] for i ∈ {1, 2, 3, 4}.

the MTR+MTS upper bound from 36.5% to 21.4% and therefore provided an impor-

tant source of identification.

4.4 Conclusion

Whenever an MIV is used to sharpen the bounds based on the MTS assumption, the

latter should be stated conditional on all the values of the instrument. This applies

to all past studies that employ the MTR+MTS+MIV assumption. To avoid any mis-

understanding, we recommend that future studies explicitly state the conditioning on

the monotone instrument when invoking the MTS assumption.

7A general identification scheme with examples is presented in Laffers (2013b), which builds upon
the work in Galichon and Henry (2009b). The Matlab source code is available upon request.

8Convex combinations of the joint distributions corresponding to the lower and the upper bound
yield values inside this interval.
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Figure 4.1: This figure depicts the joint probability distribution of the observed and
unobserved components that satisfy the MTR, MTS and MIV assumptions and that
are compatible with the probability distribution of the observed (y, z, v) (values under
the labels on the horizontal axis are the observed probabilities). The joint distribution
implies the average treatment effect of 0.365, which is higher that the upper bound
of 0.214 reported in de Haan (2011). Points for which the unobserved component is
not compatible with the observed component (∀i, t : zi = t 6→ yi = yi(t) - without
dots) must be assigned zero probability, which reduces the space of the distribution
functions from R64

+ to R32
+ . Also, points in the second column that correspond to

the unobserved component (y(0) = 1, y(1) = 0) are ruled out by the MTR assump-
tion and this further shrinks the space of the distribution functions to R24

+ . The joint
distribution is the optimal solution of the linear program shown in Figure 4.2.
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maxπ

Average Treatment Effect︷ ︸︸ ︷[
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

]
× π

subject to

DATA








1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1




× π =




0.397

0.055

0.029

0.017

0.013

0.01

0.013

0.012

0.155

0.055

0.054

0.047

0.017

0.018

0.043

0.065








Observed

probabilities

MTS

{[
0 0 0 0 0 0 0 0 0 0 0 0 .19 .19 .19 .19 0 −.80 0 −.80 0 −.80 0 −.80

0 .19 0 .19 0 .19 0 .19 0 0 0 0 .19 .19 .19 .19 −.80 −.80 −.80 −.80 −.80 −.80 −.80 −.80

]

MIV








0 0 0 0 0 0 0 0 0 0 0 0 .13 −.58 0 0 0 .13 0 −.58 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 .13 −.13 0 0 0 0 .13 0 −.13 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .14 −.13 0 0 0 0 0 .14 0 −.13

0 .13 0 −.58 0 0 0 0 0 0 0 0 .13 −.58 0 0 .13 .13 −.58 −.58 0 0 0 0

0 0 0 .13 0 −.13 0 0 0 0 0 0 0 .13 −.13 0 0 0 .13 .13 −.13 −.13 0 0

0 0 0 0 0 .14 0 −.13 0 0 0 0 0 0 .14 −.13 0 0 0 0 .14 .14 −.13 −.13




× π ≤

[
0

0

]




0

0

0

0

0

0




π ≥




0
...

0


,

π∗ =
[0.2 0.2 0.003 0.052 0 0.029 0 0.017 0.013 0.01 0.013 0.012 . . .

. . . 0.16 0.055 0.054 0.047 0 0.017 0.018 0 0.042 0.001 0.01 0.055]′.

1

Figure 4.2: This linear program searches in the space of the joint probability dis-
tributions assigned to all combinations of the observed component (y, z, v) and the
unobserved component (y(0), y(1)) that are compatible (∀i, t : zi = t → yi = yi(t))
and satisfy the MTR assumption (as depicted in Figure 4.1). The space of the joint
distributions is further restricted to satisfy the MTS assumption, the MIV assump-
tion and to be compatible with the observed probabilities. The optimal solution π∗

maximizes the average treatment effect.
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