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Test for identification
in mediation and dynamic treatment models

based on
jointly testing sequential ignorability and instrument validity in data.



Models that we employ often have complex structure.

Sometimes we wish use data to test if the structure is appropriate.



Mediation Dynamic treatmenteffects Sample selection model



Motivation



Motivation
• Identification relies on assumptions that are deemed to be intestable.
• sequential ignorability imposes that the treatment and the mediator isas good as randomly assigned after controlling for observed covariates.
• Whether the set of covariates is sufficient is typically motivated bytheory, intuition, domain knowledge or previous empirical findings.
• plausibility of sequential ignorability is often subject to debate.

→ statistical test for the identifying assumptions.
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Literature
• selection-on-observables in mediation/dyn. treatment models - Robins (1986),Robins, Hernan, and Brumback (2000), Lechner (2009) and many others.• identification conditions - Robins and Greenland (1992) and Pearl (2001)• testing identification in a single IV setup - de Luna and Johansson (2014) andBlack, Joo, LaLonde, Smith, and Taylor (2015), Angrist and Rokkanen (2015)Huber and Kueck (2022)• testing identification in a single IV setup - linear models - Angrist, Hull, Pathak,and Walters (2017)• with monotonicity conditions - Miquel (2002), Frolich and Huber (2017), andRudolph, Williams, and Diaz (2024)• testing allows for high-dimensional covariates - Chernozhukov, Chetverikov,Demirer, Duflo, Hansen, Newey, and Robins (2018)
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Contribution
• This study introduces a test for conditions that imply sequentialignorability.
• based on Huber and Kueck (2022)
• The testable conditions rely on two types of observables:

• covariates X to be controlled for,
• separate suspected instruments for the treatment Z1 and the mediator Z2.

• The testable conditions arise if...
• there is no reverse causality, e.g. Y ̸→ D, Y ̸→ X , Y ̸→ Z1• the respective instruments are relevant (first stage). e.g. Z1 ⊥̸⊥ D|X

• The testable conditions do not depend on any parametric structure.



• D: Treatment.
• Y : Outcome.
• M: Mediator.
• X : Covariates.
• Z1: Suspected instrument for treatment.
• Z2: Suspected instrument for mediator.
• U: Unobservables.
• Y (d ,m),M(d): Potential outcomes and mediators.
• f (A = a|B = b): Cond. density/probability of A = a given B = b.



Identification



Causal structure in line with Theorem 1

Z1 D M Y

Z2

X

U2 U3U1



Assumption 1 (causal structure):

M(y) = M,D(m,y ,z2) = D,X(d ,m,y ,z2) = X ,

Z1(d ,m,y ,z2) = Z1,Z2(m,y) = Z2,

Assumption 2 (common support for D and Z1):

f (D = d ,Z1 = z1|M = m,X = x)> 0

Assumption 3 (common support for for M and Z2):

f (M = m,Z2 = z2|D = d ,X = x)> 0

Assumption 4 (conditional dependence of D and Z1):

D ⊥̸⊥ Z1|X = x

Assumption 5 (conditional dependence of M and Z2):

M ⊥̸⊥ Z2|D = d ,X = x



Assumptions 1, 2, 3, 4, 5 will be assumed to hold. We will condition on thembeing true.

Now I will list assumptions that we construct a test for:

Sequential ignorability + Instruments



Assumptions - sequential ignorability
Assumption 6a

Y (d ,m)⊥⊥D|X = x

Assumption 6b

M(d)⊥⊥D|X = x

• conditional on covariates X , there exist no confounders jointly affecting
D on the one hand and Y or M on the other hand.

• D → M and D → Y



Assumptions - sequential ignorability

Assumption 7

Y (d ,m)⊥⊥M|D = d ,X = x

• conditional on D and X , there exist no confounders jointly affecting themediator M and the outcome Y .
• M → Y



Assumptions - instruments
Assumption 8a

Y (d ,m)⊥⊥Z1|X = x

Assumption 8b

M(d)⊥⊥Z1|X = x

• these rule out confounders jointly affecting Z1 on the one hand and Yor M on the other hand given X .
• they require that conditional on X , Z1 does not directly affect M or Yother than through D



Assumptions - instruments
Assumption 9

Y (d ′,m)⊥⊥Z2|D = d ,X = x

• Assumption 9 rules out confounders jointly affecting Z2 and Yconditional on D and X .
• Assumption 9 requires that Z2 does not directly affect Y (other thanthrough M) such that Y (d ,m,z2) = Y (d ,m) for any value z2 of Z2.

Note that Instruments are solely used for testing!



Testable implications
Y⊥⊥Z1|D = d ,X = x , (TIa)
M⊥⊥Z1|D = d ,X = x , (TIb)
Y⊥⊥Z2|D = d ,M = m,X = x (TIc)

Theorem 1:

Under 1,4,5︸ ︷︷ ︸causal structure
+relevance conditions

: 6a,6b,7︸ ︷︷ ︸Sequentialignorability
, 8a,8b,9︸ ︷︷ ︸Instruments

⇐⇒ (TIa),(TIb),(TIc)︸ ︷︷ ︸Testableimplications
.



Limitations
• Counterfactual values d ′ ̸= d or m′ ̸= m cannot be tested for subjectswith D = d and M = d .
• → violations exclusively concerning counterfactual rather than (f)actualoutcomes and mediators cannot be detected.
• However, it seems unlikely that violations exclusively occur amongcounterfactual, but never among factual outcomes and mediators,because this would imply very specific models.

Also
• non-parametric structural equations model representation
• Causal faithfulness



Identified causal effects
• D → Y by Assumption 6a (see de Luna and Johansson, 2014, or Huberand Kueck, 2022).
• D → M by Assumption 6b.
• M → Y by Assumption 7.
• (D,M)→ Y , e.g. E [Y (d ,m)−Y (d ′,m′)], including the controlled directeffect E [Y (d ,m)−Y (d ′,m)], by Assumptions 6a and 7 (see e.g. Robinsand coauthors).
• D → Y |M = 1 The effect of D on Y in sample selection models, where Mindicates the observability of Y (but does not affect Y such that Y (d ,m)is Y (d)), by Assumptions 6a and 7 (as assumed by Bia, Huber, andLafférs, 2023).



Natural direct and indirect effects
• Assumption 6a, 6b, and 7 are not sufficient for identifying natural directand natural indirect effects, like E [Y (d ,M(d))−Y (d ′,M(d))] and

E [Y (d ,M(d))−Y (d ,M(d ′))].
• Pearl (2001) suggests an additional counterfactual assumption yieldingidentification:

Y (d ,m)⊥⊥M(d ′)|X = x

• The latter assumption and Assumptions 6a and 6b are implied by thefollowing assumption of Imai, Keele, and Yamamoto (2010):
{Y (d ,m),M(d ′)}⊥⊥D|X = x

• We cannot test this conditional independence for joint counterfactuals,but testing Assumptions 6a and 6b for actual outcomes arguably has
nontrivial power against its violation.



Proof of Theorem 1

Analytical approach
• follows Huber and Kueck (2022).

Computational approach
• We translate assumptions into DAG semantics.
• Conduct an exhaustive search in the space of DAGs.
• Verify the theorem directly.



Computational approach

Construct all the DAGs with observed Y ,D,M,Z1,Z2.We don’t need to consider
• unobserved colliders, as these paths are closed anyway,
• unobserved mediators, as these can be interpreted as direct paths,
• unobserved confounders for more than two observed variables, asthese are equivalent to the existence of multiple pair-wise confounders
• X - because everything is conditional on X



Potential outcomes → → → DAG semantics
M(y) = M,D(m,y ,z2) = D,X(d ,m,y ,z2) = X ,Z1(d ,m,y ,z2) = Z1, (1)

Z2(m,y) = Z2

D ⊥̸⊥ Z1|X = x (4)
M(d)⊥⊥D|X = x (6b)

Y⊥⊥Z1|D = d ,X = x (TIa)
→ → → translated into → → →

There are no directed paths in the following directions: (1)
Y → M,Y → X ,Y → Z1,Y → Z2,M → D,M → X ,M → Z1,M → Z2,

Z2 → D,Z2 → X ,Z2 → Z1,Z2 → D,D → X ,D → Z1 in graph G

D and Z1 are d-connected with conditioning set {X} in graph G (4)
M and D are d-separated with conditioning set {X} in graph GD (6b)
Y and Z1 are d-separated with conditioning set {X ,D} in graph G (TIa)



Computational approach - Theorem 1
Direct and principled way.
• There are 1048576 DAGs that satisfy (1).
• There are 735232 DAGs that satisfy assumptions (1), (4), (5). Out ofthese

(i) 480 DAGs satisfy (6a), (6b), (7), (8a), (8b), (9) and at the same time, satisfy(TIa), (TIb), (TIc),(ii) 73043 (=73523-480) DAGs that do not satisfy (6a), (6b), (7), (8a), (8b), (9)and at the same time, do not satisfy (TIa), (TIb), (TIc).
Using pcalg and daggity.



Computational approach


Z X D Y
Z 0 x x x
X 0 0 x x
D 0 0 0 x
Y 0 0 0 0




Z X D Y
Z 0 0 1 0
X 0 0 1 1
D 0 0 0 1
Y 0 0 0 0
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X

YZ

D

X
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Example
Assumption A1

Assumption (TIa)



Search in the space of DAGs

n # unobs # arrows # DAGs
4 6 12 212

5 10 20 220

6 15 30 230

7 21 42 242

230 = 1 073 741 824

242 = 4 398 046 511 104



Research in progress with Dominik Pajonk.
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Figure: Minimal DAG for D ⊥̸⊥ Y .
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Figure: Maximal DAG for Z ⊥⊥ X .

Reduction in computing time by a factor 100 (!)



Help with analytical proofs

In principle: Every step in the proof could be checked against the computer.



Theorem 2:
Controlling for the Second instrument

Theorem 3:
Post-treatment covariates



Testable implications Z1 → Z2

Y⊥⊥Z1|D = d ,Z2 = z2,X = x , (TIam)
M⊥⊥Z1|D = d ,Z2 = z2,X = x , (TIbm)
Y⊥⊥Z2|D = d ,M = m,X = x (TIc)

Theorem 2:

Under 1,4,5︸ ︷︷ ︸causal structure
+relevance conditions

: 6am,6bm,7︸ ︷︷ ︸Sequentialignorability
, 8am,8bm,9︸ ︷︷ ︸Instruments

⇐⇒ (TIam),(TIbm),(TIc)︸ ︷︷ ︸Testableimplications
.



Testable implications with W

(1) and W (m) = W , (1m)
Y⊥⊥Z1|D = d ,X = x , (TIa)
M⊥⊥Z1|D = d ,X = x , (TIb)
Y⊥⊥Z2|D = d ,M = m,X = x ,W = w (TIe)

Theorem 3:
Under 1m,4,5m︸ ︷︷ ︸causal structure

+relevance conditions

: 6a,6b,7m︸ ︷︷ ︸Sequentialignorability
, 8a,8b,9m︸ ︷︷ ︸Instruments

⇐⇒ (TIa),(TIb),(TIe)︸ ︷︷ ︸Testableimplications
.



Testing



Testing

Null hypothesis:
• Denote by µB(a) = E(B|A = a) the conditional mean of B given A = a.
• The null hypothesis is given by

H0 : 0 = θ := E

 (µY (D,X)−µY (D,X ,Z1))
2

(µM(D,X)−µM(D,X ,Z1))
2

(µY (D,M,X)−µY (D,M,X ,Z2))
2

 .



Testing
Score function for testing:
• Testing is based on the following score function (in analogy to Huberand Kueck, 2022), which is Neyman-orthogonal and asymptoticallynormal under the null (H0 : θ = 0):

φ(V ,θ ,η) = (η1(V )−η2(V ))2 −θ +ζ .

• V = (Y ,D,M,X ,Z1,Z2),
• η1(V ) = (µY (D,X),µM(D,X),µY (D,M,X))′,

η2(V ) = (µY (D,X ,Z1),µM(D,X ,Z1),µY (D,M,X ,Z2))
′,

• ζ is an independent mean-zero random variable with variance σ2
ζ
> 0 to

avoid the test statistic to be degenerate under the null.
• η1(V ), η2(V ) may be estimated by machine learning with cross-fitting(see e.g. Chernozhukov et al. 2018) if X is high-dimensional.



Simulation



Main setup (Theorem 1)

D = I{X ′
β +0.5Z1 +U1 > 0},

M = 0.5D+0.5Z2 +X ′
β +δU1 +U2,

Y = D+0.5M +X ′
β + γZ1 + γZ2 +δU1 +U3,

X ∼ N (0,σ2
X ),Z1 ∼ N (0,1),Z2 ∼ N (0,1),

U1 ∼ N (0,1),U2 ∼ N (0,1),U3 ∼ N (0,1),

δ – confounding
γ – exclusion restriction violation



sample size rej. rate mean pval
δ = 0 & γ = 0

1000 0.044 0.5134000 0.047 0.510
δ = 1 & γ = 0

1000 0.688 0.1224000 1.000 0.000
δ = 0 & γ = 0.2

1000 0.086 0.4474000 1.000 0.000



Alternative setup: Z1 → Z2 (Theorem 2)

D = I{X ′
β +0.5Z1 +U1 > 0},

M = 0.5D+0.5Z2 +X ′
β +δU1 +U2,

Y = D+0.5M +X ′
β + γZ1 + γZ2 +δU1 +U3,

X ∼ N (0,σ2
X ),Z1 ∼ N (0,1),Z2 = U4 +0.5Z1

U1 ∼ N (0,1),U2 ∼ N (0,1),U3 ∼ N (0,1),U4 ∼ N (0,1)



sample size rej. rate mean pval
δ = 0 & γ = 0

1000 0.042 0.5144000 0.049 0.510
δ = 1& γ = 0

1000 0.297 0.2864000 1.000 0.000
δ = 0 & γ = 0.2

1000 0.234 0.3184000 1.000 0.000



Empirical Illustration
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Dynamic treatment effects of Slovak labor market programs: administrative dataon job seekers in Slovakia previously analyzed by Lafférs and Štefánik (2024).
• D is six-month training starting in 2016 named Graduate practice.
• M is Employment incentives program (combines hiring incentives withsubsidized employment) starting in 2017 (typically one year).
• Y is employment indicator in 2019.
• Z1 is local availability of D and corresponds to the ratio of jobseekers enrolledin intervention D in the previous year (2015); analogous method is used tocompute Z2 related to M .• Pre-treatment covariates X (264 variables): regional information, maritalstatus, dependents, education and skills, employment histories, priorunemployment benefits, willingness to relocate for work, health information,and caseworker assessments of employability.• Five post-treatment covariates (W ) that might affect both M and Y :participation in programs other than D during treatment period, absence fromthe unemployment register, application for minimum subsistence benefits.



Application

teststat se pval effect effect se effect pval effect ntrimmed
0.00042 0.00036 0.24189 0.0855 0.0249 0.0006 6,288

Results with limited X and without W

p-value = 0.242 → p-value = 0.069



Conclusion



Conclusion

• Joint test for instrument validity and sequential ignorability in dynamictreatment and mediation models.
• Machine learning-based procedure allowing for high-dimensionalcontrol variables.
• Application to labor market data from Slovakia.
• testmedident() in package causalweight (Bodory and Huber)



Thank you.
www.lukaslaffers.com
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