Correcting for Nonignorable Nonresponse Bias in Ordinal Observational Survey Data

Jozef Michal Mintál¹, Lukáš Lafférs², Ivan Sutoris³

¹Matej Bel University, Research and Innovation Center ²Matej Bel University, Dept. of Mathematics ²NHH, Dept. of Economics ³NBS

MIER conference 2025

Motivation

(□▶◀♬▶◀콜▶◀콜▶ 볼 ∽੧<♡

Motivation

• Survey sample data often not representative of general population.

- We cannot sample from the general population difficult.
- Even if we could, how about the non-response?
- Cannot be ignored.
- Non-response rates easily $\sim 50\%$
- We are interested in ordinal data.
- These are very common.

"How satisfied are you with life?"

- Extremely satisfied
- Very satisfied
- Moderately satisfied
- Slightly satisfied
- Not satisfied at all

"National economy has gotten better or worse?"

- Gotten much better
- Gotten somewhat better
- Stayed about the same
- Gotten somewhat worse
- Gotten much worse

"Do you favor or oppose death penalty"

- Favor strongly
- Favor not strongly
- Oppose not strongly
- Oppose strongly

"How willing should US be to use military force to solve international problems?"

- Extremely willing
- Very willing
- Moderately willing
- A little willing
- Not at all willing

We would like to have a model that allows for

- survey sample weighting
- estimation of relationship between outcomes and response and thus modeling non-response selection bias
- the use of covariates to model outcomes and responses

Peress (2010): 🗹 🗹

Peress, Michael. "Correcting for survey nonresponse using variable response propensity." Journal of the American Statistical Association 105.492 (2010): 1418-1430.

But also

• can handle ordinal data

Peress (2010): 🗹 🗹 🔀

This paper: 🗹 🗹 🗹

Main idea is that we extrapolate from low-propensity respondents to \rightarrow non-respondents.

• No matter what we do, we have to extrapolate somehow.

Peress (2010), p.1421

Literature

□▶◀@▶◀콜▶◀콜▶ 돌 ∽੧<?~

- extension of variable response propensity estimator (VRPE) of Peress (2010)
- Heckman (1979) sample selection models
- continuum of resistance models Fillion (1975), Drew and Fuller (1980)

- classes models O'Neil (1979)
- missing data problem Rosenbaum and Rubin (1983)
- Behaghel et al. (2015): bounds in the spirit of Lee (2009)

Model

|□▶▲@▶▲≧▶▲≧▶ / 差 / のへで

Model with Gaussian errors ε_n and η_n

Outcome model

$$y_{n} \in \{1, 2, 3, ..., Y\} \qquad r_{n} \in \{1, 2, 3, ..., R\}$$
$$y_{n}^{*} = \alpha^{T} x_{n} + \varepsilon_{n} \qquad r_{n}^{*} = \beta^{T} z_{n} + \eta_{n}$$
$$y_{n} = \begin{cases} 1 & \text{if } y_{n}^{*} \leq \gamma_{1} \\ 2 & \text{if } y_{n}^{*} \in (\gamma_{1}, \gamma_{2}] \\ 3 & \text{if } y_{n}^{*} \in (\gamma_{2}, \gamma_{3}] \\ \vdots \\ Y & \text{if } y_{n}^{*} > \gamma_{Y-1}. \end{cases} \qquad r_{n} = \begin{cases} 1 & \text{if } r_{n}^{*} \leq \theta_{1} \\ 2 & \text{if } r_{n}^{*} \in (\theta_{1}, \theta_{2}] \\ 3 & \text{if } r_{n}^{*} \in (\theta_{2}, \theta_{3}] \\ \vdots \\ R & \text{if } r_{n}^{*} > (\theta_{R-1}, \theta_{R}] \\ R+1 & \text{if } r_{n}^{*} > \theta_{R}. \end{cases}$$
$$corr(\varepsilon_{n}, \eta_{n}) = \rho$$

Response model

Non-respondents

Outcome model

$$y_{n} \in \{1, 2, 3, ..., Y\}$$

$$y_{n}^{*} = \alpha^{T} x_{n} + \varepsilon_{n}$$

$$y_{n} = \begin{cases} 1 & \text{if } y_{n}^{*} \leq \gamma_{1} \\ 2 & \text{if } y_{n}^{*} \in (\gamma_{1}, \gamma_{2}] \\ 3 & \text{if } y_{n}^{*} \in (\gamma_{2}, \gamma_{3}] \\ \vdots \\ Y & \text{if } y_{n}^{*} > \gamma_{Y-1}. \end{cases}$$

$$r_{n} = \begin{cases} 1 & \text{if } r_{n}^{*} \leq \theta_{1} \\ 2 & \text{if } r_{n}^{*} \in (\theta_{1}, \theta_{2}] \\ 3 & \text{if } r_{n}^{*} \in (\theta_{2}, \theta_{3}] \\ \vdots \\ R & \text{if } r_{n}^{*} > (\theta_{R-1}, \theta_{R}] \\ R+1 & \text{if } r_{n}^{*} > \theta_{R}. \end{cases}$$

$$corr(\varepsilon_{n}, \eta_{n}) = \rho$$

Response model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Parameters $(\alpha, \beta, \gamma, \theta, \rho)$

Outcome model

$$y_{n} \in \{1, 2, 3, ..., Y\}$$

$$y_{n}^{*} = \alpha^{T} x_{n} + \varepsilon_{n}$$

$$r_{n} \in \{1, 2, 3, ..., R\}$$

$$r_{n}^{*} = \beta^{T} z_{n} + \eta_{n}$$

Response model

 $\operatorname{corr}(\varepsilon_n,\eta_n)=\rho$

Data (y_n, r_n, x_n, z_n)

Outcome model

$$y_{n} \in \{1, 2, 3, ..., Y\}$$

$$y_{n}^{*} = \alpha^{T} x_{n} + \varepsilon_{n}$$

$$r_{n} \in \{1, 2, 3, ..., R\}$$

$$r_{n}^{*} = \beta^{T} z_{n} + \eta_{n}$$

Response model

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - のへで

Log-Likelihood

 $\log L(\alpha, \beta, \gamma, \theta, \rho | v_n, r_n, x_n, z_n)$ $\sum_{n=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{Y} l\{r_n = r, y_n = y\} \times$ $\times \log \int I\{\gamma_{y-1} \leq \alpha^{\mathsf{T}} x_n + \varepsilon \leq \gamma_y, \theta_{r-1} \leq \beta^{\mathsf{T}} z_n + \eta \leq \theta_r\} \phi(\varepsilon, \eta) \, \mathrm{d}\varepsilon \, \mathrm{d}\eta$ $N_{miss} \cdot \log \sum_{k=1}^{K} p_k^z \int I\{ eta^{ op} z_k + \eta \geq heta_R \} \phi(\eta) d \eta$

◆□> ◆□> ◆臣> ◆臣> 「臣」のへで

 $\log L(\alpha,\beta,\gamma,\theta,\rho|y_n,r_n,x_n,z_n)$

$$= \sum_{n=1}^{N} \sum_{r=1}^{R} \sum_{y=1}^{Y} I\{r_{n} = r, y_{n} = y\} \times \\ \times \log \int I\{\gamma_{y-1} \le \alpha^{T} x_{n} + \varepsilon \le \gamma_{y}, \theta_{r-1} \le \beta^{T} z_{n} + \eta \le \theta_{r}\} \underbrace{\phi(\varepsilon, \eta)}_{\rho \text{ is here}} d\varepsilon d\eta \\ + \underbrace{N_{miss} \cdot \log \sum_{k=1}^{K} p_{k}^{Z} \int I\{\beta^{T} z_{k} + \eta \ge \theta_{R}\} \phi(\eta) d\eta}_{\text{non-respondents}}$$

data, parameters, outcome error, response error, non-respondents, weights

Illustration

।□▶◀∰▶◀≣▶◀≣▶ ≣ ∽९०°

American National Election Studies data

- Published Feb 2025
- \sim 3000 obs: face-to-face, web, paper
- \sim 50% non-response
- response variables: rate interviewer, <u>rate interview</u>, do you take survey seriously
- covariates: married, gender, race, education
- outcomes: ordinal data (various questions related to politics, values etc.)

Response measure: !!! Little variability !!! 🖄

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Response measure: Fine. ☑

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

How satisfied are you with life?

Rating of the interview (response variable)

Liked a great deal Liked a moderate amount Liked a little Neither liked nor disliked Disliked a little Disliked a moderate amount Disliked a great deal

How satisfied are you with life? ($\rho = 0.414$, $\rho = 0.491$, $\rho = 0.548$)

◆□▶◆□▶◆□▶◆□▶ □ のへで

National economy has gotten better or worse?

National economy has gotten better or worse? ($\rho = -0.008$, $\rho = 0.001$, $\rho = 0.002$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Unemployment is better or worse than last year?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Unemployment is better or worse than last year? ($\rho = 0.151$, $\rho = 0.186$, $\rho = 0.211$)

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ ○臣・ のへで

How much trust and confidence do you have in news?

Rating of the interview (response variable)

Liked a great deal Liked a moderate amount Liked a little Neither liked nor disliked Disliked a little Disliked a moderate amount Disliked a great deal

How much trust and confidence do you have in news? ($\rho = 0.198$, $\rho = 0.224$, $\rho = 0.253$)

▲口 → ▲団 → ▲目 → ▲目 → ▲回 →

Conclusion

।□▶◀♬▶◀ె₽▶◀ె₽ ੭९०

Conclusion

What we have:

- extension of Peress (2010) for ordinal outcome variables
- that is: parametric model for outcome and response that may reduce non-response bias
- derived likelihood and standard errors
- empirical illustration on American National Election Studies data (Feb 2025)

• R code of the implementation

What is left to do (?)

- simulations
- other measures for response propensity
- performance benchmark
- marketing

Thank you.

www.lukaslaffers.com

▲□▶▲□▶▲□▶▲□▶ □ のへで

Additional figures

।□▶◀∰▶◀≣▶◀≣▶ ≣ ∽९०°

How accurately do you think the votes will be counted?

Rating of the interview (response variable)

Liked a great deal Liked a moderate amount Liked a little Neither liked nor disliked Disliked a little Disliked a moderate amount Disliked a great deal

How accurately do you think the votes will be counted? ($\rho = 0.135$, $\rho = 0.15$, $\rho = 0.17$)

Is religion an important part of your life?

Rating of the interview (response variable)

Liked a great deal Liked a moderate amount Liked a little Neither liked nor disliked Disliked a little Disliked a moderate amount Disliked a great deal

Is religion an important part of your life? ($\rho = 0.257$, $\rho = 0.316$, $\rho = 0.363$)

Importance of abortion issue.

Rating of the interview (response variable)

Liked a great deal Liked a moderate amount Liked a little Neither liked nor disliked Disliked a little Disliked a moderate amount Disliked a great deal

Importance of abortion issue. ($\rho = 0.072$, $\rho = 0.076$, $\rho = 0.085$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ