Testing identification in mediation & dynamic treatment models

Martin Huber¹, Kevin Kloiber² and Lukáš Lafférs³

¹University of Fribourg, Dept. of Economics ²University of Munich, Dept. of Economics ³Matej Bel University, Dept. of Mathematics

PROBASTAT 23 May 2024

Test for identification

in mediation and dynamic treatment models

based on

jointly testing sequential ignorability and instrument validity in data.

Mediation

Dynamic treatment effects

Motivation

Motivation

- Identification relies on assumptions that are deemed to be intestable.
- sequential ignorability imposes that the treatment and the mediator is as good as randomly assigned after controlling for observed covariates.
- Whether the set of covariates is sufficient is typically motivated by theory, intuition, or previous empirical findings.
- plausibility of sequential ignorability is often subject to debate.

 \rightarrow statistical test for verifying the identifying assumptions.

Contribution

Contribution

- This study introduces a test for conditions that imply sequential ignorability to verify identification in observational data.
- The testable conditions rely on two types of observables:
 - covariates X to be controlled for,
 - separate suspected instruments for the treatment Z_1 and the mediator Z_2 .
- The testable conditions arise if...
 - there is no reverse causality, e.g. $Y \not\rightarrow D$, $Y \not\rightarrow X$, $Y \not\rightarrow Z_1$
 - the respective instruments aare relevant (first stage). e.g. $Z_1 \not\!\perp D | X$

Testable condition

- If...
 - the supposed instrument for the treatment is conditionally independent of the outcome, given treatment and covariates,
 - the supposed instrument for the mediator is conditionally independent of the outcome, given treatment, mediator, and covariates,
- it holds that...
 - instruments do not directly influence the outcome, except through the treatment or mediator, and are not associated with unobservables affecting the outcome, given observables,
 - sequential ignorability holds (treatment and mediator are not associated with unobservables affecting the outcome, given observables).

 \Rightarrow Conditional independence of the instruments is sufficient for sequential ignorability and can be tested in observational data.

- D: Treatment.
- Y: Outcome.
- M: Mediator.
- X: Covariates.
- *Z*₁: Suspected instrument for treatment.
- Z₂: Suspected instrument for mediator.
- U: Unobservables.
- Y(d,m), M(d): Potential outcomes and mediators.
- f(A = a | B = b): Cond. density/probability of A = a given B = b.

Identification

Causal structure in line with Theorem 1

Assumption 1 (causal structure):

$$M(y) = M, D(m, y, z_2) = D, X(d, m, y, z_2) = X,$$

$$Z_1(d, m, y, z_2) = Z_1, Z_2(m, y) = Z_2,$$

Assumption 2 (common support for D and Z_1):

$$f(D=d, Z_1=z_1|M=m, X=x) > 0$$

Assumption 3 (common support for for *M* and Z_2):

$$f(M = m, Z_2 = z_2 | D = d, X = x) > 0$$

Assumption 4 (conditional dependence of D and Z_1):

$$D \not \perp Z_1 | X = x$$

Assumption 5 (conditional dependence of M and Z_2):

$$M \not\!\perp Z_2 | D = d, X = x$$

Assumptions 1, 2, 3, 4, 5 will be assumed to hold. We will condition on them being true.

Now I will list assumptions that we construct a test for.

Assumption 6a (Conditional independence of treatment and potential outcomes):

 $Y(d,m) \perp D | X = x$

Assumption 6b (Conditional independence of treatment and potential mediators):

 $M(d) \perp D | X = x$

- Assumptions 6a and 6b require that conditional on covariates *X*, there exist no confounders jointly affecting *D* on the one hand and *Y* or *M* on the other hand.
- This permits identifying the causal effect of *D* on *M* or *Y* when controlling for *X*.

Assumption 7 (conditional independence of the mediator):

 $Y(d,m) \perp \perp M | D = d, X = x$

- Assumption 7 requires that conditional on *D* and *X*, there exist no confounders jointly affecting the mediator *M* and the outcome *Y*.
- This permits identifying the causal effect of *M* on *Y* when controlling for *D* and *X*.

Assumption 8a (conditional independence of the treatment instrument and potential outcomes):

 $Y(d,m) \perp \perp Z_1 | X = x$

Assumption 8b (conditional independence of the treatment instrument and potential mediators):

$$M(d) \bot \bot Z_1 | X = x$$

- Assumptions 8a and 8b rule out confounders jointly affecting Z₁ on the one hand and Y or M on the other hand given X.
- Assumptions 8a and 8b require that conditional on X, Z₁ does not directly affect M or Y other than through D

Assumption 9 (conditional independence of the mediator instrument):

$$Y(d',m) \perp \perp Z_2 | D = d, X = x$$

- Assumption 9 rules out confounders jointly affecting Z₂ and Y conditional on D and X.
- Assumption 9 requires that Z₂ does not directly affect Y (other than through M) such that Y(d, m, z₂) = Y(d, m) for any value z₂ of Z₂.

Testable implications

$$Y \bot \bot Z_1 | D = d, X = x, \tag{Tla}$$

$$M \perp \perp Z_1 | D = d, X = x, \tag{TIb}$$

$$Y \perp \perp Z_2 | D = d, M = m, X = x$$
 (TIc)

Theorem 1:

Under 1,4,5: $6a, 6b, 7, 8a, 8b, 9 \iff (Tla), (Tlb), (Tlc).$

Testable implications

- Theorem 1 may be used to test the implications for factual values of mediators and outcomes, i.e., for Y(d, m) and M(d) among subjects actually receiving D = d and M = d.
- Counterfactual values d' ≠ d or m' ≠ m cannot be tested for subjects with D = d and M = d.
- \rightarrow violations exclusively concerning counterfactual rather than (f)actual outcomes and mediators cannot be detected.
- However, it seems unlikely that violations exclusively occur among counterfactual, but never among factual outcomes and mediators, because this would imply very specific models.

Identified causal effects

- *D* → *Y* by Assumption 6a (see de Luna and Johansson, 2014, or Huber and Kueck, 2022).
- $D \rightarrow M$ by Assumption 6b.
- $M \rightarrow Y$ by Assumption 7.
- $(D, M) \rightarrow Y$, e.g. E[Y(d, m) Y(d', m')], including the controlled direct effect E[Y(d, m) Y(d', m)], by Assumptions 6a and 7 (see e.g. Robins and coauthors).
- D → Y|M = 1 The effect of D on Y in sample selection models, where M indicates the observability of Y (but does not affect Y such that Y(d, m) is Y(d)), by Assumptions 6a and 7 (as assumed by Bia, Huber, and Lafférs, 2023).

Natural direct and indirect effects

- Assumption 6a, 6b, and 7 are not sufficient for identifying natural direct and natural indirect effects, like E[Y(d, M(d)) Y(d', M(d))] and E[Y(d, M(d)) Y(d, M(d'))].
- Pearl (2001) suggests an additional counterfactual assumption yielding identification:

 $Y(d,m) \perp M(d') | X = x$

• The latter assumption and Assumptions 6a and 6b are implied by the following assumption of Imai, Keele, and Yamamoto (2010):

 $\{Y(d,m), M(d')\} \perp D | X = x$

• We cannot test this conditional independence for joint counterfactuals, but testing Assumptions 6a and 6b for actual outcomes arguably has nontrivial power against its violation. Analytical approach

• follows Huber and Kueck (2022).

Computational approach

- We translate assumptions into DAG semantics.
- Conduct an exhaustive search in the space of DAGs.
- Verify the theorem directly.

Computational approach

Construct all the DAGs with observed Y, D, Z_1, Z_2 . We don't need to consider

- unobserved colliders, as these paths are closed anyway,
- unobserved mediators, as these can be interpreted as direct paths,
- unobserved confounders for more than two observed variables, as these are equivalent to the existence of multiple pair-wise confounders from the point of view of existence of open paths and hence identification.
- X because everything is conditional on X

Potential outcomes $\rightarrow \rightarrow \rightarrow DAG$ semantics

$$M(y) = M, D(m, y, z_2) = D, X(d, m, y, z_2) = X, Z_1(d, m, y, z_2) = Z_1,$$

$$Z_2(m, y) = Z_2$$

$$D \not\!\!\!/ Z_1 | X = x$$

$$M(d) \sqcup D | X = x$$

$$Y \sqcup Z_1 | D = d, X = x$$
(4)
(6b)
(71a)

 $\rightarrow \rightarrow \rightarrow$ translated into $\rightarrow \rightarrow \rightarrow$

There are no directed paths in the following directions: (1) $Y \rightarrow M, Y \rightarrow X, Y \rightarrow Z_1, Y \rightarrow Z_2, M \rightarrow D, M \rightarrow X, M \rightarrow Z_1, M \rightarrow Z_2,$ $Z_2 \rightarrow D, Z_2 \rightarrow X, Z_2 \rightarrow Z_1, Z_2 \rightarrow D, D \rightarrow X, D \rightarrow Z_1$ in graph *G D* and *Z*₁ are d-connected with conditioning set {*X*} in graph *G M* and *D* are d-separated with conditioning set {*X*} in graph *G*_D *Y* and *Z*₁ are d-separated with conditioning set {*X*, *D*} in graph *G* (6b)

Computational approach - Theorem 1

Direct and principled way.

- There are 1048576 DAGs that satisfy (1).
- There are 735232 DAGs that satisfy assumptions (1), (4), (5). Out of these
 - (i) 480 DAGs satisfy (6a), (6b), (8a), (8b), (7), (9) and at the same time, satisfy (Tla), (Tlb), (Tlc),
 - (ii) 73043 (=73523-480) DAGs that do not satisfy (6a), (6b), (8a), (8b), (7), (9) and at the same time, do not satisfy (TIa), (TIb), (TIc).

Controlling for the Second instrument

X U2U1Z2Z1М Y D U3U4U5

Post treatment covariates

Null hypothesis:

- Denote by $\mu_B(a) = E(B|A = a)$ the conditional mean of *B* given A = a.
- The null hypothesis is given by

$$H_0: 0 = \theta := E \begin{pmatrix} (\mu_Y(D, X) - \mu_Y(D, X, Z_1))^2 \\ (\mu_M(D, X) - \mu_M(D, X, Z_1))^2 \\ (\mu_Y(D, M, X) - \mu_Y(D, M, X, Z_2))^2 \end{pmatrix}.$$

Testing

Score function for testing:

• Testing is based on the following score function (in analogy to Huber and Kueck, 2022), which is Neyman-orthogonal and asymptotically normal under the null:

$$\phi(V, \theta, \eta) = (\eta_1(V) - \eta_2(V))^2 - \theta + \zeta.$$

- $V = (Y, D, M, X, Z_1, Z_2),$
- $\eta_1(V) = (\mu_Y(D,X), \mu_M(D,X), \mu_Y(D,M,X))',$ $\eta_2(V) = (\mu_Y(D,X,Z_1), \mu_M(D,X,Z_1), \mu_Y(D,M,X,Z_2))',$
- ζ is an independent mean-zero random variable with variance $\sigma_{\zeta}^2 > 0$ to avoid the test statistic to be degenerate under the null.
- η₁(V), η₂(V) may be estimated by machine learning with cross-fitting (see e.g. Chernozhukov et al. 2018) if X is high-dimensional.

Empirical Illustration

Dynamic treatment effects of Slovak labor market programs: administrative data on job seekers in Slovakia previously analyzed by Lafférs and Štefánik (2024).

- *D* is six-month training starting in 2016 named graduate practice.
- *M* is employment incentives program (combines hiring incentives with subsidized employment) starting in 2017 (typically one year).
- *Y* is employment indicator in 2019.
- Z_1 is local availability of *D* and corresponds to the ratio of jobseekers enrolled in intervention *D* in the previous year (2015); analogous method is used to compute Z_2 related to *M*.
- Pre-treatment covariates X consist of 264 variables: regional information, marital status, dependents, education and skills, employment histories, prior unemployment benefits, willingness to relocate for work, health information, and caseworker assessments of employability.
- We also control for five post-treatment covariates (*W*) that might affect both *M* and *Y*: participation in programs other than *D* during treatment period, absence from the unemployment register, application for minimum subsistence benefits.

Application

Results:

teststat	se	pval	effect	effect_se	effect_pval	effect_ntrimmed
0.00042	0.00036	0.24189	0.0824	0.0247	0.0008	6,280

Conclusion

Conclusion

- Joint test for instrument validity and sequential ignorability in dynamic treatment and mediation models.
- Machine learning-based procedure allowing for high-dimensional control variables.
- Application to labor market data from Slovakia.

Thank you. www.lukaslaffers.com