Testing identification in mediation & dynamic treatment models

Martin Huber¹, Kevin Kloiber² and <u>Lukáš Lafférs</u>³

¹University of Fribourg, Dept. of Economics

EALE Bergen 2024

²University of Munich, Dept. of Economics

³Matej Bel University, Dept. of Mathematics

³NHH, Dept. of Economics

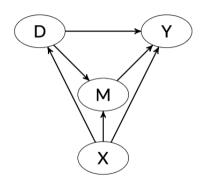
Test for identification

in mediation and dynamic treatment models

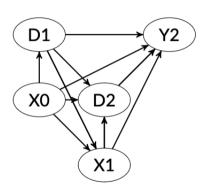
based on

jointly testing sequential ignorability and instrument validity in data.

Mediation



Dynamic treatment effects



Motivation

Motivation

- Identification relies on assumptions that are deemed to be intestable.
- sequential ignorability imposes that the treatment and the mediator is as good as randomly assigned after controlling for observed covariates.
- Whether the set of covariates is sufficient is typically motivated by theory, intuition, domain knowledge or previous empirical findings.
- plausibility of sequential ignorability is often subject to debate.

 \rightarrow statistical test for the identifying assumptions.

Contribution

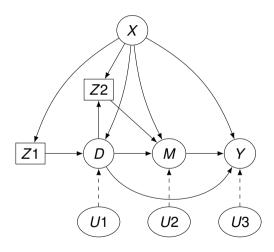
Contribution

- This study introduces a test for conditions that imply sequential ignorability.
- based on Huber and Kueck (2022)
- The testable conditions rely on two types of observables:
 - covariates *X* to be controlled for,
 - separate suspected instruments for the treatment Z_1 and the mediator Z_2 .
- The testable conditions arise if...
 - there is no reverse causality, e.g. $Y \nrightarrow D$, $Y \nrightarrow X$, $Y \nrightarrow Z_1$
 - the respective instruments are relevant (first stage). e.g. $Z_1 \not\perp \!\!\! \perp D|X$

- D: Treatment.
- Y: Outcome.
- M: Mediator.
- X: Covariates.
- Z₁: Suspected instrument for treatment.
- Z_2 : Suspected instrument for mediator.
- U: Unobservables.
 - Y(d, m), M(d): Potential outcomes and mediators.
 - f(A = a|B = b): Cond. density/probability of A = a given B = b.

Identification

Causal structure in line with Theorem 1



Assumption 1 (causal structure):

$$M(y) = M, D(m, y, z_2) = D, X(d, m, y, z_2) = X,$$

 $Z_1(d, m, y, z_2) = Z_1, Z_2(m, y) = Z_2,$

Assumption 2 (common support for D and Z_1):

$$f(D = d, Z_1 = z_1 | M = m, X = x) > 0$$

Assumption 3 (common support for for M and Z_2):

$$f(M = m, Z_2 = z_2 | D = d, X = x) > 0$$

Assumption 4 (conditional dependence of D and Z_1):

$$D \perp \perp Z_1 \mid X = X$$

Assumption 5 (conditional dependence of M and Z_2):

$$M \perp \!\!\! \perp Z_2 | D = d, X = x$$

Assumptions 1, 2, 3, 4, 5 will be assumed to hold. We will condition on them being true.

Now I will list assumptions that we construct a test for:

Sequential ignorability + Instruments

Assumptions - sequential ignorability

Assumption 6a

$$Y(d,m) \perp \perp D|X = x$$

Assumption 6b

$$M(d) \perp \perp D|X = x$$

- conditional on covariates *X*, there exist no confounders jointly affecting *D* on the one hand and *Y* or *M* on the other hand.
- $D \rightarrow M$ and $D \rightarrow Y$

Assumptions - sequential ignorability

Assumption 7

$$Y(d,m)\perp \perp M|D=d,X=x$$

- conditional on *D* and *X*, there exist no confounders jointly affecting the mediator *M* and the outcome *Y*.
- ullet $M \rightarrow Y$

Assumptions - instruments

Assumption 8a

$$Y(d,m)\perp \perp Z_1|X=x$$

Assumption 8b

$$M(d) \perp \perp Z_1 | X = x$$

- these rule out confounders jointly affecting Z_1 on the one hand and Y or M on the other hand given X.
- they require that conditional on X, Z₁ does not directly affect M or Y other than through D

Assumptions - instruments

Assumption 9

$$Y(d',m)\perp \perp Z_2|D=d,X=x$$

- Assumption 9 rules out confounders jointly affecting Z_2 and Y conditional on D and X.
- Assumption 9 requires that Z_2 does not directly affect Y (other than through M) such that $Y(d, m, z_2) = Y(d, m)$ for any value z_2 of Z_2 .

Testable implications

$$Y \perp \perp Z_1 | D = d, X = x,$$
 (Tla)

$$M \perp \perp Z_1 | D = d, X = x,$$
 (TIb)

$$Y \perp \perp Z_2 | D = d, M = m, X = x$$
 (Tlc)

Theorem 1:

Under
$$\underbrace{1,4,5}_{\text{causal structure}}$$
: $\underbrace{6a,6b,7}_{\text{sequential ignorability}}$, $\underbrace{8a,8b,9}_{\text{Instruments}}$ \Longleftrightarrow $\underbrace{(\textit{Tla}),(\textit{Tlb}),(\textit{Tlc})}_{\text{Testable implications}}$.

Limitations

- Counterfactual values $d' \neq d$ or $m' \neq m$ cannot be tested for subjects with D = d and M = d.
- violations exclusively concerning counterfactual rather than (f)actual outcomes and mediators cannot be detected.
- However, it seems unlikely that violations exclusively occur among counterfactual, but never among factual outcomes and mediators, because this would imply very specific models.

Identified causal effects

- D → Y by Assumption 6a (see de Luna and Johansson, 2014, or Huber and Kueck, 2022).
- $D \rightarrow M$ by Assumption 6b.
- $M \rightarrow Y$ by Assumption 7.
- $(D,M) \rightarrow Y$, e.g. E[Y(d,m) Y(d',m')], including the controlled direct effect E[Y(d,m) Y(d',m)], by Assumptions 6a and 7 (see e.g. Robins and coauthors).
- D → Y|M = 1 The effect of D on Y in sample selection models, where M indicates the observability of Y (but does not affect Y such that Y(d, m) is Y(d)), by Assumptions 6a and 7 (as assumed by Bia, Huber, and Lafférs, 2023).

Natural direct and indirect effects

- Assumption 6a, 6b, and 7 are not sufficient for identifying natural direct and natural indirect effects, like E[Y(d, M(d)) Y(d', M(d))] and E[Y(d, M(d)) Y(d, M(d'))].
- Pearl (2001) suggests an additional counterfactual assumption yielding identification:

$$Y(d,m)\perp \perp M(d')|X=x$$

• The latter assumption and Assumptions 6a and 6b are implied by the following assumption of Imai, Keele, and Yamamoto (2010):

$$\{Y(d,m),M(d')\}\perp \perp D|X=x$$

 We cannot test this conditional independence for joint counterfactuals, but testing Assumptions 6a and 6b for actual outcomes arguably has nontrivial power against its violation.

Proof of Theorem 1

Analytical approach

• follows Huber and Kueck (2022).

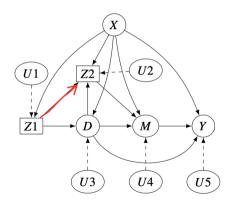
Computational approach

- We translate assumptions into DAG semantics.
- Conduct an exhaustive search in the space of DAGs.
- Verify the theorem directly.

▶ Details on the computational approach

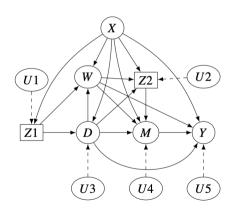
Theorem 2:

Controlling for the Second instrument



Theorem 3:

Post treatment covariates



Testing

Testing

Null hypothesis:

- Denote by $\mu_B(a) = E(B|A=a)$ the conditional mean of B given A=a.
- The null hypothesis is given by

$$H_0: 0 = \theta := E \begin{pmatrix} (\mu_Y(D,X) - \mu_Y(D,X,Z_1))^2 \\ (\mu_M(D,X) - \mu_M(D,X,Z_1))^2 \\ (\mu_Y(D,M,X) - \mu_Y(D,M,X,Z_2))^2 \end{pmatrix}.$$

▶ Details on Testing

Simulation

Main setup (Theorem 1)

$$\begin{array}{lll} D &=& I\{X'\beta + 0.5Z_1 + U_1 > 0\}, \\ M &=& 0.5D + 0.5Z_2 + X'\beta + \delta U_1 + U_2, \\ Y &=& D + 0.5M + X'\beta + \gamma Z_1 + \gamma Z_2 + \delta U_1 + U_3, \\ X &\sim& \mathcal{N}(0, \sigma_X^2), Z_1 \sim \mathcal{N}(0, 1), Z_2 \sim \mathcal{N}(0, 1), \\ U_1 &\sim& \mathcal{N}(0, 1), U_2 \sim \mathcal{N}(0, 1), U_3 \sim \mathcal{N}(0, 1), \end{array}$$

- δ confounding γ - exclusion restriction violation

sample size rej. rate mean pval						
$\delta=$ 0 & $\gamma=$ 0						
1000	0.044	0.513				
4000	0.047	0.510				
$\delta=$ 1 & $\gamma=$ 0						
1000	0.688	0.122				
4000	1.000	0.000				
$\delta=$ 0 & $\gamma=$ 0.2						
1000	0.086	0.447				
4000	1.000	0.000				

Empirical Illustration

Dynamic treatment effects of Slovak labor market programs: administrative data on job seekers in Slovakia previously analyzed by Lafférs and Štefánik (2024).

- *D* is six-month training starting in 2016 named *Graduate practice*.
- *M* is *Employment incentives* program (combines hiring incentives with subsidized employment) starting in 2017 (typically one year).
- Y is employment indicator in 2019.
- Z_1 is local availability of D and corresponds to the ratio of jobseekers enrolled in intervention D in the previous year (2015); analogous method is used to compute Z_2 related to M.
- Pre-treatment covariates *X* (264 variables): regional information, marital status, dependents, education and skills, employment histories, prior unemployment benefits, willingness to relocate for work, health information, and caseworker assessments of employability.
- Five post-treatment covariates (*W*) that might affect both *M* and *Y*: participation in programs other than *D* during treatment period, absence from the unemployment register, application for minimum subsistence benefits.

Application

teststat	se	pval	effect	effect_se	effect_pval	effect_ntrimmed
0.00042	0.00036	0.24189	0.0855	0.0249	0.0006	6,288

Results with limited X and without W

 $p\text{-value} = 0.242 \rightarrow p\text{-value} = 0.069$

Conclusion

Conclusion

- Joint test for instrument validity and sequential ignorability in dynamic treatment and mediation models.
- Machine learning-based procedure allowing for high-dimensional control variables.
- Application to labor market data from Slovakia.
- testmedident() in package causalweight

Thank you.
www.lukaslaffers.com

Computational approach

Construct all the DAGs with observed Y, D, Z_1, Z_2 .

We don't need to consider

- unobserved colliders, as these paths are closed anyway,
- unobserved mediators, as these can be interpreted as direct paths,
- unobserved confounders for more than two observed variables, as these are equivalent to the existence of multiple pair-wise confounders from the point of view of existence of open paths and hence identification.
- X because everything is conditional on X

Potential outcomes \rightarrow \rightarrow DAG semantics

$$M(y) = M, D(m, y, z_2) = D, X(d, m, y, z_2) = X, Z_1(d, m, y, z_2) = Z_1,$$
 (1)
 $Z_2(m, y) = Z_2$
 $D \not\perp \!\!\!\!\perp Z_1 | X = X$ (4)
 $M(d) \!\perp \!\!\!\perp D | X = X$ (6b)
 $Y \!\perp \!\!\!\perp Z_1 | D = d, X = X$ (Tla)
 $\rightarrow \rightarrow \rightarrow \text{translated into} \rightarrow \rightarrow \rightarrow$
There are no directed paths in the following directions: (1)
 $Y \rightarrow M, Y \rightarrow X, Y \rightarrow Z_1, Y \rightarrow Z_2, M \rightarrow D, M \rightarrow X, M \rightarrow Z_1, M \rightarrow Z_2,$
 $Z_2 \rightarrow D, Z_2 \rightarrow X, Z_2 \rightarrow Z_1, Z_2 \rightarrow D, D \rightarrow X, D \rightarrow Z_1 \text{ in graph } G$
 D and Z_1 are d-connected with conditioning set $\{X\}$ in graph G (4)
 M and D are d-separated with conditioning set $\{X\}$ in graph G (6b)
 Y and Z_1 are d-separated with conditioning set $\{X\}$ in graph G (71a)

Computational approach - Theorem 1

Direct and principled way.

- There are 1048576 DAGs that satisfy (1).
- There are 735232 DAGs that satisfy assumptions (1), (4), (5). Out of these
 - (i) 480 DAGs satisfy (6a), (6b), (8a), (8b), (7), (9) and at the same time, satisfy (Tla), (Tlb), (Tlc),
 - (ii) 73043 (=73523-480) DAGs that do not satisfy (6a), (6b), (8a), (8b), (7), (9) and at the same time, do not satisfy (Tla), (Tlb), (Tlc).

▶ Back

Testing

Score function for testing:

 Testing is based on the following score function (in analogy to Huber and Kueck, 2022), which is Neyman-orthogonal and asymptotically normal under the null:

$$\phi(V,\theta,\eta)=(\eta_1(V)-\eta_2(V))^2-\theta+\zeta.$$

- $V = (Y, D, M, X, Z_1, Z_2),$
- $\eta_1(V) = (\mu_Y(D,X), \mu_M(D,X), \mu_Y(D,M,X))',$ $\eta_2(V) = (\mu_Y(D,X,Z_1), \mu_M(D,X,Z_1), \mu_Y(D,M,X,Z_2))',$
- ζ is an independent mean-zero random variable with variance $\sigma_{\zeta}^2 > 0$ to avoid the test statistic to be degenerate under the null.
- $\eta_1(V)$, $\eta_2(V)$ may be estimated by machine learning with cross-fitting (see e.g. Chernozhukov et al. 2018) if X is high-dimensional.

$Z_1 \rightarrow Z_2$ (Theorem 2)

$$M = 0.5D + 0.5Z_2 + X'\beta + \delta U_1 + U_2,$$

$$Y = D + 0.5M + X'\beta + \gamma Z_1 + \gamma Z_2 + \delta U_1 + U_3,$$

$$X \sim \mathcal{N}(0, \sigma_X^2), Z_1 \sim \mathcal{N}(0, 1), Z_2 = U_4 + 0.5Z_1$$

$$U_1 \sim \mathcal{N}(0, 1), U_2 \sim \mathcal{N}(0, 1), U_3 \sim \mathcal{N}(0, 1), U_4 \sim \mathcal{N}(0, 1)$$

 $D = I\{X'\beta + 0.5Z_1 + U_1 > 0\},\$

sample size	rej. rate	mean pval			
δ = 0 & γ = 0					
1000	0.042	0.514			
4000	0.049	0.510			
$\delta=$ 1& γ = 0					
1000	0.297	0.286			
4000	1.000	0.000			
δ = 0 & γ = 0.2					
1000	0.234	0.318			
4000	1.000	0.000			